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Abstract—Reconfigurable analog hardware presents an ideal
platform for the realization and analysis of biorealistic neural
systems. This work explains the use of subthreshold MOSFETs
to model biological channels and proposes energy-efficient, bioin-
spired neuron and synapse circuits for reconfigurable analog
hardware. The proposed circuits are experimentally evaluated
in the context of a two-neuron oscillator on an in-house SoC
field-programmable analog array in a 350 nm CMOS process.

I. NEED FOR BIOREALISM AND RECONFIGURABILITY

Biological neurons perform efficient computation with com-
plex nonlinear dynamics, enabling networks of neurons to
form synfire chains and winner-take-all circuits, solving prob-
lems including path planning and coincidence detection. Neu-
ron models need to be biorealistic to harness dynamical com-
plexities; however, many computing applications are energy-
constrained, which poses a challenge while scaling biorealistic
neurons to large problems.

Analog implementations are advantageous due to their
significantly lower power consumption as compared to their
digital counterparts. Hardware-based networks of neurons can
facilitate low-level exploration of neural mechanisms [1, 2]
and bridge the gap between damaged biological neurons and
functional networks [3]. We propose a pathway to improve the
emulation of networks of neurons in reconfigurable hardware
by modelling biological elements with analog circuits. Our
approach capitalizes on the physics of subthreshold MOSFETs
to efficiently and accurately implement neural circuits within
a low-power, continuous-time CMOS framework [1].

For experimental measurement, we utilize our in-house SoC
field-programmable analog array (FPAA), which is a highly
versatile general-purpose analog computation platform in a
350 nm process [4] that uses software tools openly available
at https://hasler.ece.gatech.edu/FPAAtool/. The FPAA enables
flexible network design and 13-bit precision in weights and
biases [5]. We also exploit our routing fabric for synaptic
computation. While our prior work established a biorealistic
Hodgkin-Huxley neuron circuit [6] and a triangle generator
circuit [7] to potentially produce excitatory post-synaptic po-
tentials (EPSPs) [8] on our SoC FPAA, networks of neurons
have not yet been demonstrated due to inadequate neuron
dynamics and triangle generator output waveform scaling in
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Fig. 1. There are striking similarities between the physics of subthreshold
MOS transistors and biological channels, which both modulate channel current
between two regions via a gating function that controls the surface potential.
This enables one to efficiently model biological neurons in standard CMOS
and construct large networks of neurons on reconfigurable analog platforms.

previous attempts. This work addresses and overcomes these
issues to experimentally demonstrate a functional network.

To this end, this paper introduces modifications to a previ-
ously proposed neuron circuit [6] to enhance dynamics and
proposes a new triangle generator circuit with appropriate
output scaling for accurate EPSP production. Circuits are
constructed and experimentally characterized individually and
then together (in the context of a two-neuron oscillator). The
rest of this work is structured as follows. Section II relates
biological and transistor channels, Section III demonstrates
a Hodgkin-Huxley neuron circuit, Section IV explains EPSP
generation, Section V shows the dynamics of a two-neuron
oscillator, and Section VI provides concluding remarks.

II. PASSIVE CHANNELS

The physical laws governing the behavior of biological and
subthreshold MOSFET channels are similar, as shown in Fig.



1, which enables subthreshold MOSFETs to be an energy-
efficient means to model biological channels. Fundamentally,
in all electrochemical systems, currents flow due to differences
in quasi-Fermi levels. In electronics, band diagrams represent
increasing electron energy, and for ions, band diagrams rep-
resent increasing positive charge energy. Subthreshold MOS-
FETs and biological channels share equivalent electronic
band diagrams [9], where charges at the edge terminals are
modulated by the channel potential. The channel potential
(Ψ) is roughly flat for subthreshold MOSFET channels and
varies slightly for biological channels. Both channel types
have a Boltzmann distribution of charge carrier states, where
the probability of a charge carrier energy state is given by
p(E) ∝ exp (−E/kBT ), where kBT is the mean carrier
thermal energy. Ψ is controlled by some gating mechanism,
which is effectively intrinsically fixed for a passive channel
and modulated by an external potential or chemical concentra-
tion for an active channel. Understanding of passive biological
channels helps better understanding of active channels.

A MOSFET modulates the channel current between the
source (Vs) and drain (Vd) terminal using its gate (Vg). The
EKV model [9] describes the channel currents for a pFET
(well at VDD) and an nFET (substrate at 0V) as follows:

Ip(Vs, Vg, Vd,W/L) = I0,p
W

L

[
e9κpVg

(
eVs 9 eVd

)]
(1)

In(Vd, Vg, Vs,W/L) = I0,n
W

L

[
eκnVg

(
e9Vs 9 e9Vd

)]
(2)

where voltages are normalized by thermal voltage UT =
kBT/q = RT/F , W/L denotes the FET dimension ratio, κ:

denotes the respective gate-channel coupling strength, and:

I0,p = ITH,p exp (κp (VDD − VT0,p)− VDD) (3)
I0,n = ITH,n exp (−κnVT0,n) (4)

where ITH,: denotes the threshold current, and VT0,: denotes
the threshold voltage of the corresponding device.

Irrespective of the differing majority carriers of nFETs
and pFETs, the underlying principles governing the channel
currents are similar; thus, most concepts applicable to pFETs
are also applicable to nFETs. Assuming that the pFET source
is connected to ENa, Eq. 1 shows that a pFET transitions
smoothly from a conductance to a current source when Vd

continues to drop below Vs, as expected from biological
channels and shown in Fig. 2. At low potential differences
between Vd and Vs (< UT ), the channel acts like a resistor.
At higher potentials (> 2UT ), the channel potential is only
weakly dependent on Vd; in such cases, the transistor operates
like a current source relative to Vd, and dependence of the
drain current on Vd can usually be neglected.

III. NEURON CIRCUIT

As shown in Fig. 3(a), we use a MOSFET-based neuron
with voltage-gated K+ and Na+ channels for a biorealistic
SoC FPAA implementation [6]. The K+ channel can only be
activated while the Na+ channel can be both activated and
deactivated; thus, the K+ and Na+ channel gating behaviors can
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Fig. 2. Experimentally measured drain sweeps for a passive (a) pFET channel
with ENa = 1.6V and (b) nFET channel with EK = 1.3V. The pFET and
nFET correspond to MNa, and MK , respectively, which are ion channels
present in the neuron circuit model. As explained in Fig. 1, the I-V curves of
biological ion channels are similar in shape to these transistor measurements,
with the minimum current occurring at the reversal/resting potential.

be represented by a lowpass filter (LPF) and bandpass filter
(BPF) response (respectively) and implemented with filters
that respond to changes in Vmem.

Tunable elements are necessary to combat mismatch, induce
different synaptic weights, and make inter-neuron connections.
The reconfigurable SoC FPAA, which utilizes programmable
floating-gate (FG) transistors [4], uses FG pFETs as flexible
synaptic inputs and precise biases in the channel gating circuits
as in [7]. The following subsections discuss how FG-based
circuits are leveraged for biorealistic channel gating.

A. K+ Channel

The nFET-based K+ channel is gated by a voltage VK ,
which is generated by a nonlinear LPF with a pseudo-first-
order response. This LPF is built using an FG operational
transconductance amplifier (FGOTA) in a negative feedback
configuration and parasitic capacitances on the FGOTA output
node. The time constant of the LPF, which is analogous to τn
in the original model of Hodgkin and Huxley [10], can be
adjusted via the programmable FGOTA bias current.
τn must be on the timescale of a spike width for biorealism,

as shown in Fig. 3(b). The τn for the neuron tuning in Fig.
3(b) is achieved with an FGOTA bias of only 2 nA; hence, K+
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Fig. 3. Neuron (a) schematic, (b) experimentally measured nodal voltages during a spike, and (c) experimentally measured IF curve with exemplary Vmem.
For the demonstrated tuning, 17nA initiates continuous firing, which starts at 596Hz and can be modulated by an order of magnitude. Notice that the spike
shape and minimum level changes with the firing rate. Also note that in (a), grayed components are induced through parasitics.

gating draws little power. The DC level of VK , which can be
adjusted by programming a gate charge discrepancy between
the input FG differential pair transistors of the FGOTA, must
be large enough to pull down Vmem during repolarization but
low enough to allow the Na+ channel to initiate depolarization.

B. Na+ Channel
The pFET-based Na+ channel is gated by a voltage VNa,

which is generated by a nonlinear BPF with a pseudo-second-
order response. The BPF has a smaller time constant τm,
which is adjusted via the FGOTA bias current, and a larger
time constant τh, which is adjusted via Vτh (the programmed
gate voltage on the feedback FG pFET Mτh). τh must not
be excessively large, as this prevents neuron repolarization.
VREF , which sets the DC level of VNa, should be chosen
such that Mτh will have sufficient strength to pull current from
the output node, changing VNa. We have also added MτU , an
nFET “constant-current source,” to the original circuit in [6] to
restrict the lower amplitude level of VNa, ensuring consistent
spiking while preserving biological dynamics.

Neuron behavior can be elucidated by studying the wave-
forms in Fig. 3(b). When a fast-rising voltage is sensed at
Vmem above the high-frequency corner set by τm (e.g., due
to a sufficiently large input current Iin), VNa drops, sourcing
current into Vmem and causing a depolarization. VNa rises
back after some time, deactivating the Na+ channel. The K+

channel, which slowly activates in response to the depolariza-
tion, cooperates with the Na+ deactivation to repolarize Vmem.
Note that VNa overshoots on its way back up, which leads to
a biorealistic hyperpolarization.

C. Neuron Characterization
The neuron IF curve shape governs network dynamical

behavior. Fig. 3(c) displays the IF curve of the tuned neurons
used in this work. The onset of periodic spiking occurs above
a threshold of 17 nA, and spiking frequency initially increases
linearly with input current (Iin) before tapering. Intermittent
spiking can be induced by noise even when Iin is below the pe-
riodic spiking threshold. The shape of action potentials varies
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Fig. 4. (a) Triangle generator and source-coupled synapse schematics. (b)
Vtri and EPSP (Isyn) after a spike. Measurements of Vtri match well with
Eq. 6, and measured EPSPs closely model the Rall Alpha function. (c) Vtri

and Isyn measurements during a spike burst demonstrating EPSP stacking.

with the Iin, with lower Iin having larger inter-spike intervals
and reaching lower potentials during hyperpolarization.

IV. GENERATION OF POSTSYNAPTIC POTENTIALS

Neuron depolarizations are detected using a comparator
with a threshold VTRSH . To ensure the comparator output
(Vspike) can reliably feed the corresponding triangle gener-



ator circuit across all spiking frequencies, action potentials
should be thresholded near the “kink” caused by Na+ channel
deactivation during repolarization. The triangle generator and
synapse [Fig. 4(a)] then cooperatively generate an EPSP from
Vspike. This work uses source-coupled FG pFET synapses,
where the synapse strength can be adjusted by programming
the FG using hot electron injection. We operate synapses in
subthreshold saturation, where the drain current varies expo-
nentially with the source voltage. Since an EPSP resembles
a smoothed piecewise combination of a fast-growing and a
slow-decaying exponential, an EPSP can be generated by mod-
ulating the source voltage of a synapse using an asymmetric
triangular waveform. We generate this triangular waveform by
asymmetrically integrating Vspike using the circuit in Fig. 4(a).
The output of this circuit rises rapidly to a high level when
Vspike is high and falls slowly to a resting DC level when
Vspike is low. The T-gate responsible for switching the attack
current is placed above MSRC to mitigate charge injection
into the integration node.

Triangle generator behavior can be better understood by
writing a compact ODE for the integration node using KCL
and Eq. 1 for channel currents, assuming matched dimensions
and threshold voltages for MDC , MSRC , and MSNK :

∂Vtri

∂t
=

MDCI0,p
CINTUT

[
ϵe9kpVSRC

(
eVDD 9 eVtri

)
+

e9kpVDC

(
eVDD 9 eVtri

)
9 e9kpVSNK

(
eVtri 9 1

)] (5)

where voltages are normalized by UT , and ϵ = 1 if Vspike is
high, and ϵ = 0 otherwise. As VDD ≫ Vtri ≫ 0, ∂Vtri/∂t ≈

MDCI0,p
CINTUT

[
eVDD(

ϵe9kpVSRC+e9kpVDC
)
9eVtri9kpVSNK

]
(6)

Typically, the triangle generator is biased with VSRC ≪
VSNK ≪ VDC . We can consequently find that the resting
DC level (Vtri,min), swing range (∆Vtri), and initial decay
rate of Vtri (Sdec) depend on the programmed FG voltages:

Vtri,min ≈ VDD + kp (VSNK 9 VDC) (7)
∆Vtri ≈ kp (VDC 9 VSC) (8)
Sdec = 9MDCI0,p exp (Vtri 9 kpVSNK) /UTCINT (9)

The initial slew rate of Vtri is only a weakly nonlinear function
of Vtri, and although the asymptotic slew rate magnitude is
lower than what is predicted from Eq. 9, this nonideality has
a minimal effect on the EPSP shape since the correponding
current magnitudes are small. For a “fast” attack bias, such as
in the tuning in Fig. 3(b), parasitic capacitances on the FPAA
are usually the most significant contributors to the duration of
the rising portion of the EPSP, not VSRC .

Triangle generator tuning depends on the neuron IF curve;
a convenient protocol for tuning the triangle generator is to:
(1) adjust VSNK so the decay rate is 4-5 times lower than the
attack rate but does not induce EPSP stacking at the lower end
of the neuron IF curve, (2) adjust VDC so the desired resting
DC level lies between 1.8V and 2.0V, and (3) adjust VSC so

1 2
Iext

0 0.5 1 1.5 2 2.5 3
Time (ms)

0

50

100

150

I e
x

t (
n

A
)

0 0.5 1
Time (ms)

1.8

1.9

1.8

1.9

1.8

1.9

1.8

1.9
V

tri  (V
)

Fig. 5. Experimentally measured spike times from a two-neuron oscillator
for different Iext along with exemplary triangle generator outputs. Neuron
1 spikes regularly above some threshold current. For low Iext, neuron 2
is synchronized with neuron 1. Beyond a certain Iext, neuron 2 becomes
asynchronous since bounds on synaptic strength prevent neuron 2 from spiking
as fast as neuron 1, even with EPSP stacking.

the swing range lies between 4UT and 8UT . Iterating steps 1-3
a few times yields a reasonable tuning. Measurements from a
tuned triangle generator and excitatory synapse, as shown in
Fig. 4(b), indicate that Vtri closely follows Eq. 6, and the EPSP
closely approximates a Rall Alpha function. Additionally, Fig.
4(c) demonstrates EPSP stacking during fast spiking, which is
essential for network dynamics and is observed both in biology
and our hardware implementation.

V. TWO-NEURON OSCILLATOR

Neuronal oscillators are ubiquitous in motor neuron path-
ways and can serve as a benchmark for evaluating neuron dy-
namics. One-dimensional oscillators can be constructed using
a feedforward chain of neurons with a recurrent connection
feeding the output back into the input. In this work, we
construct a two-neuron oscillator, as depicted in Fig. 5, with
all synaptic connections of roughly the same strength. We
measure spike timestamps for both neurons and observe that
the “fronts” corresponding to the spike timing of neuron 1
form regular patterns (represented by fuchsia lines) regulated
mainly by the IF curve of neuron 1. Meanwhile, the fronts
corresponding to the spike timing of neuron 2 (represented
by blue lines) stay synchronous to neuron 1 for low external
input currents (Iext) but become asynchronous for high Iext
despite considerable EPSP stacking. This phenomenon occurs
due to limitations imposed by synapse strength, which become
unable to match Iext beyond some limit. While these results
demonstrate the effectiveness of our current approaches, addi-
tional work is necessary to ensure consistent tuning across
all neurons and synapses to guarantee accurate large-scale
dynamical behavior in the presence of mismatch.

VI. CONCLUSION

This work has explored the use of subthreshold MOSFETs
to simulate biological channels and has shown neuron and
synapse circuits with biophysically-accurate dynamics on an
in-house SoC FPAA. Synaptic circuit transients are found to
follow analytical models, and circuits are demonstrated in a
two-neuron oscillator. In all, this work is a step toward a
complete ecosystem for studying biorealistic neural systems.
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