
1

Towards Scalable Digital Modeling of Networks of
Biorealistic Silicon Neurons

Swagat Bhattacharyya†, Graduate Student Member, IEEE, Praveen Raj Ayyappan†, Graduate Student
Member, IEEE, and Jennifer O. Hasler*, Senior Member, IEEE

Abstract—The study of biorealistic neuron circuits has been
limited by the efficiency of digital implementations. Efficient
digital approaches generally use I&F variants, losing important
neural properties for network computation. In contrast, accurate
neuron ODEs tend to utilize computationally intensive operations,
causing the overhead to become prohibitive for large spiking
neural network applications. This effort presents efficient digital
approximations for coupled HH neurons derived from transistor-
channel neural modeling. Neuron models are implemented in
C using floating-point and 32-bit fixed-point arithmetic, and
small networks are simulated using a fixed-step ODE solver. Our
approach enables large network simulation of HH-like neurons,
facilitating scalable digital modeling while also providing a direct
path towards a framework for analog computation.

Index Terms—HH Neuron, Analytic Model, Fixed-Point, Spik-
ing Neural Net, Synfire, Winner-Take-All, 100K Neuron.

I. ISSUES PLAGUING ACCURATE NEURON MODELS

THE exploration and application of biorealistic neurons
have been hindered by the steep tradeoff between com-

putational simplicity and biorealistic dynamical behavior, re-
sulting in delayed or unexplored innovations in real-time
neural computation and neuroscience exploration. Existing
efficient neuron implementations on digital hardware often
utilize I&F variants (all acronyms are introduced in Table
I), which often overlook important dynamical properties in
network computation applications, leading to reduced efficacy.

The HH model remains a gold standard for biorealistic
neuron modeling, especially in applications like neural path
planning applications [1], [2]. HH neuron spike shapes can be
important for studying network desynchronization, and such
biorealistic models are important for determining relationships
between connectivity and behavior [3]. Large-scale networks
of HH neurons can facilitate the study of brain dynamics;
by using 121,000 HH neurons, [4] reproduced experimentally
observed behavior in 0.3mm3 of neocortical tissue. The HH
neuron also offers valuable insights into dendritic integration
and synaptic plasticity [5]. However, computationally intensive
operations in the HH model, such as natural exponents and
division, make it impractical for resource-constrained applica-
tions or large-scale emulation on digital platforms.

This work was partially supported by the National Science Foundation
Graduate Research Fellowship under Grant No. DGE-2039655. The authors
thank Pranav Mathews for useful insight and Jaron Rosenberg for developing
a Python implementation. †The first two authors contributed equally to this
work. Asterisk indicates corresponding author

All authors are with the School of Electrical and Computer Engineering,
Georgia Institute of Technology, Atlanta, GA 30332 USA (correspondence:
jennifer.hasler@ece.gatech.edu).

Iin ?

Fig. 1. Prior work [6], [7] suggests biological neurons can be parsimoniously
modelled with continuous-time analog circuits. This work aims to bridge the
gap between these analog circuits and their digital representation, providing a
scalable framework for the emulation of biorealistic silicon neural networks.

To address these challenges, [6] introduced an analog sil-
icon neuron model (hereafter referred to as the FH model),
mirroring the voltage clamp responses in the original HH
experiments. By leveraging the shared Boltzmann statistics
governing carrier transport in MOSFET and biological chan-
nels, the six-transistor FH model achieves a more energy-
efficient and compact circuit representation than approaches
which attempt to directly implement the original HH equa-
tions. Despite arriving at entirely different equations than the
original HH model, the FH model replicates the bifurcation
structure of the HH model given suitable parameters [8]. Yet,
the scalability of analog networks of HH-like neurons remains
uncertain, and reconfigurable analog chips for large network
exploration are not yet commercially available.

Thus, a digital emulation framework for analog systems
is sought to guide design until analog platforms become
accessible. Previous approaches have attempted to economize
computation through FXP arithmetic and parallel FPGA im-
plementation. For example, [9] can potentially simulate 15,000
HH neurons using their FXP approach. Emulation approaches
like FPGAs also enable the evaluation of system efficacy in
real-time neuromorphic applications, with the understanding
that trained networks can be ported to analog platforms when
available, provided the digital modeling is accurate. Control
applications can be particularly sensitive to delay, and one
such application which would benefit greatly from FPGA-
accelerated networks is closed-loop neuroprosthesis [10].

This work addresses the need for efficient digital emulation
frameworks for silicon neurons by presenting efficient FXP
and FP digital approximations for coupled FH neurons [Fig.
1]. Our holistic approach derives mathematical neuron models
from circuit-level principles, elucidates operation in networks,
and proposes strategies for efficient computation. Our work
presents several novel contributions compared to previous
work with the FH neuron [6], [8], such as:

• Capability to emulate moderately sized networks of FH

2

2
x
= 2N 1+()

= X - N [Fractional Part]

[Approx.]

N = floor(X) [Integer Part]

-2 -1 0 1 2
0

1

2

4

2X

Approx.

True Value

X

3

e-S (Normalize Exponents w.r.t UT)

OS*2-Y/ln(2) (Conversion to Base-2 Exponents)

OS*2-Z (Normalize Exponents w.r.t ln(2))

Approx. Exponents and Fixed-Point Conversion

OS*e-S (Offset S to Optimize Eigenvalue Spread)

 n+ / p+ n+ / p+

Gate
Source Drain

 p / n - type substrate

P(E) = 1/(1+e)
(E-Ef)/kBT -(E-Ef)/kBT

e (E>>Ef)

e-V/UT

D

S

InsideOutside

[Cx]i
= e-(EF/RT)

[Cx]o
e-V/UT

Inside

Outside

Lipid Bilayer MembraneSubthreshold MOSFET

UT
kBT
q =

RT
F

=

Scale Time Variable

Fig. 2. There are striking similarities between the carrier energy band
diagram of transistor and biological channels, which lead to the emergence of
Boltzmann factors in both cases. In particular, Boltzmann factors appear in the
channel current expressions for MOSFET channels, leading to computational
expense. To improve computational expense, we perform a sequence of oper-
ations, starting with normalizing by the thermal voltage (UT) and ending with
piecewise approximation of exponents in a base-2, fixed-point representation.

neurons (1D and 2D synfire chains and WTA networks)
with both excitatory and inhibitory connections.

• An FXP model of the FH neuron with computation
accuracy and efficiency analysis; our approach achieves
a better tradeoff between computation overhead and error
compared to previous FXP approaches for HH neurons.

• Improved FH neuron modeling through inclusion of the
Ohmic region of the channel MOSFETs and inclusion of
additional parasitic capacitances in the Na channel gating
circuit (for proper bandpass frequency response).

• Model availability (MATLAB, Python, and C) on GitHub:
PraveenRajAyyappan/EfficientAnalogNeuron-SNNsims.

Our approach ensures that models can be both directly trans-
lated to sampled embedded computing systems while also
remaining accurate to physically realizable, biorealistic silicon
neurons. Hence, we pave the path for a systematic investigation
into the network behavior of biorealistic analog silicon neurons
within large-scale, biorealistic network architectures [11], [12]
for real-time, energy-efficient neuromorphic computing and for
computational neuroscience acceleration [4].

Starting from transistor-channel models for neurons and
synapses, we renormalize nodal voltages as fractions of ther-
mal voltage, converting the exponential terms in subthreshold
MOSFET channel current expressions into base-2 exponents.
These exponents are then approximated using bit shifts and
low-order residue multiplications. The conditioned neuron
models are implemented in C using both FP and 32-bit FXP
arithmetic. We demonstrate the potential of our approach for
larger network emulation on commercially available digital
infrastructure through small-scale neural circuit experiments.

II. IMPLEMENTATIONS OF SPIKING NEURAL NETWORKS

SNN implementation success is contingent on several in-
terconnected factors, including the use case, neuron model,
hardware framework, and computing resource constraints.

A. Neuron Simulations and Specialized Hardware

SNNs primarily serve two purposes: emulating biological
networks and solving complex computational tasks (such as

TABLE I
LIST OF ACRONYMS IN THIS WORK

Acronym Definition Acronym Definition
ASIC Application-Specific GPU Graphics Processing Unit

Integrated Circuit HH Hodgkin-Huxley [13]
CORDIC COordinate Rotation LUT LookUp Table

DIgital Computer MAC Multiply-ACcumulate
CPU Central Processing Unit ML Machine Learning
DAE Differential-Algebraic Eq. MOS Metal-Oxide-Semiconductor

DC Direct Current NLP NonLinear Programming
DSP Digital Signal Processor NMAE Normalized Mean
EKV Enz-Krummenacher-Vittoz Absolute Error
FET Field-Effect Transistor NRMSE Normalized Root-

FF Flip-Flop Mean-Square Error
FG Floating-Gate (transistor) ODE Ordinary Differential
FH Farquhar-Hasler [6] Equation

FOM Figure Of Merit PCHIP Piecewise Cubic Hermite
FP Floating-Point Interpolating Polynomial

FPGA Field-Programmable RTL Register-Transfer Level
Gate Array SNN Spiking Neural Network

FXP FiXed-Point WTA Winner-Take-All

robot control, path-planning, and image processing) [14]. The
neuron model employed is contingent on the application.

The classic HH model [13], which is the most biorealistic
yet computationally intensive, is generally used for neuro-
science research. Conversely, models used for computational
tasks, such as the leaky I&F [15] and Izhikevich models
[16], abstract away ion channel dynamics, resulting in lower
computational cost; indeed, the I&F model has enabled [17]
to model 100,000 granular cells and 1,000 golgi cells on an
FPGA for studying timing control. However, such abstractions
come at the cost of biorealism, which limit the ability of sim-
plified models to capture nonideal ion channel phenomena like
temperature dependence in kinetics or channel abnormalities
(the physiological basis of several diseases). Some simplified
neural models, like the Morris-Lecar model [18] (which bio-
realistically describes oscillatory behavior in barnacle muscle
fibers), are inadequate for modeling spike frequency adaptation
[19]. Thus, the dynamical richness of the HH model makes
it desirable for both types of SNN applications, although
understanding which specific aspects are vital requires further
exploration. Before the HH model can be effectively used for
computational SNN exploration, a satisfactory approximation
requiring significantly fewer hardware-intensive computations
must be developed. Such approximations are crucial to make
the HH model more competitive with the widely used leaky
I&F model, which has 24-fold fewer computations [14], [20].

Software simulation frameworks, such as NEURON, NEST,
PCSIM, MOOSE, and GENESIS, have been pivotal, em-
ploying parallelized approaches like MPI, multiprocessing,
OpenMP, and CUDA to accelerate simulations. While frame-
works like NEURON and NEST, which are grounded in
higher-order variable-step-size ODE solvers, are adept at bal-
ancing solution accuracy and time for large networks, they
do not guarantee real-time (bounded) solutions, limiting use
in controls applications. In contrast, reconfigurable digital
hardware (e.g., FPGAs) can simulate analogous networks in
real time with lower power. Reconfigurable digital implemen-
tations often use fixed-step solvers, which attain sufficient
accuracy given bounded, synchronized inputs, though they
require more derivative evaluations than variable-step methods.
Current limitations of software frameworks arise from their

3

Neuron &

Triangle Prod.

Iext,1

VDD

Neuron &

Triangle Prod.

(1)

(2)

1 2
Iext,1

VDD

Msyn

Msyn

VDD

Msyn

Msyn

Vtri,ex,n

Vtri,ih,n

Excitatory

Inhibitory

Iext

Vtri,ex,1

Vtri,ih,1

From

Neuron [1]

From

Neuron [n]

Synapses

Vthr

Triangle

Gen (excite)

Triangle

Gen (excite)

Triangle

Gen (excite)

Triangle

Gen (inhibit)

Vtri,ex

Vtri,ihTriangle

Production

To Other

Neurons

VDD

Vbp

Vbn

Ms

Md

Rh

Rl

Vtri

Voff

Cint

Vint

Integrator Scaler
Iin

Cmem

I
l

El

M l

V
l

Vgk

V n

I n

EK

IK VK

CK

INa

ENa

MNa

Iamp

I
m V

m

Cz

Vamp

V h

I hVNa

Vg

M h

M m

Mamp

Cw

Vsat

CNa

Vmem

M nMK

Neuron

Cl

Fig. 3. Circuit-level implementation of networks using the FH model. Neurons are coupled with synaptic circuits, including triangle generators and gate-
coupled FG FET synapses. The ideal resistive divider in the triangle generator scaling circuit is merely an abstraction and would be composed of FETs in a
complementary MOS implementation. These circuits, which we compactly model, serve as the building blocks for biorealistic analog neural networks [12].

reliance on general-purpose hardware like CPUs or GPUs,
whereas barebones SNNs on reconfigurable hardware demon-
strate considerably better performance-per-Watt and speed [9].
In short, reconfigurable digital hardware and digital computers
serve different purposes, and each presents unique strengths
and weaknesses — complicating a direct comparison. Hence,
the choice of computing hardware needs careful examination.

B. Selection of Computing Hardware
SNN computing hardware choice is influenced by the appli-

cation scope, choice of neuron model, and the network size.
The implementation overhead of SNNs vary among different
neuron models; the HH model, with its four coupled stiff
ODEs containing exponential nonlinearities, is particularly
intensive. The choice between FP and FXP models is also im-
portant. FP models, with their large dynamic range, are well-
suited for general computing tasks and are tolerant to ill-scaled
variables, but require more memory and processing resources.
In contrast, FXP models are more memory-efficient and faster,
as they exploit bit shifts and additions to implement low-order
approximations of intensive operations (or entirely avoid these
operations in some cases); nevertheless, FXP operations can
inflate numerical errors, which should be characterized.

GPUs are commonly used for FP models due to their
dedicated FP units and ample memory. However, FPGAs offer
better optimization in data flow and arithmetic precision for
FXP models, as well as native support for peripherals (making
them ideal for closed-loop applications like neural prostheses
[10]). DSPs can also be used for FXP implementations, offer-
ing higher portability, speed, and energy efficiency compared
to FPGAs, but their limited resources restrict network scaling.

High-performance GPU clusters are commonly used for
parallelization while modeling the brain. For edge computing
applications, GPU power draw is generally too high, and
ASICs are not commonly pursued due to their low reconfigura-
bility and time-consuming design process. An FPGA provides
an appealing middle ground between ASICs and GPUs for
smaller computational tasks (i.e., <15,000 HH neurons [9]).

C. Adapting HH Models to an FPGA
The transistor-channel-based FH model is implemented in

C and can utilize FXP arithmetic. FPGAs are ideal for our

HH-like model given their ability to leverage FXP arithmetic
and high-level synthesis tools that translate C to RTL code.
Efficient FPGA implementations of the canonical HH neuron
model typically use three numerical strategies: CORDIC,
piecewise-linear approximations, and orthonormalization.

[21] has optimized the HH model by using LUTs to
store approximations of tan−1 and tabulating exponentials
of integers within a range. To efficiently compute arbitrary
exponents, stored values in the LUT are combined with ex-
ponentials of the corresponding fractional digits as computed
though CORDIC. In this way, [21] can simulate 120 neurons.
In contrast, [9] has formulated the exponentially dependent
parameter equations in the HH neuron model using hyperbolic
functions realized through CORDIC algorithms in FPGA,
simulating 1,034 neurons and projecting that 15,000 neurons
can be implemented if FPGA resources are fully utilized.

[22] has used piecewise linear approximations for
exponential-dependent functions to reduce computational re-
source utilization and has simulated 4,096 neurons. The
CORDIC algorithm is more accurate than the piecewise-linear
approximation method [9], [21]. [23] has proposed an HH
model using piecewise-linear approximations to implement
divisions and nonlinear internal model variables. [23] also uses
base-2 exponents to approximate a hyperbolic formulation of
the HH model, avoiding multiplications. [24] has achieved
low resource utilization through a reduced-order, two-variable
piecewise-linear spiking neuron inspired by HH dynamics.

[25] has shown a multiplier-less HH model leveraging base-
2 operations to convert nonlinearities to base-2 exponentials.
[25] then used Gram-Schmidt orthonormalization to represent
dynamical variables in a base-2 exponential basis, ensuring a
scalable, low-power implementation with no DSP blocks.

Most notably, [26] has compared neuron models using
different approximation techniques, finding linear interpolation
of base-2 exponents more resource-efficient than CORDIC
algorithms. Therefore, our approach uses linear interpolation
and optional low-order residue multiplications to implement
base-2 exponents, avoiding divisions entirely.

III. SILICON NEURON AND SYNAPSE MODELING

In this section, we derive ODEs in state variable formulation
for biophysically inspired neuron [6] and synapse [7] circuits.

4

An overview of these circuits, as well as their interconnections,
is provided in Fig. 3; in essence, gate-coupled FG FET
synapses intercouple neurons, and triangle generator circuits
interface with synapse control gates to mimic the Rall Alpha
function and provide biorealistic postsynaptic currents given
a presynaptic spike. The rest of this section is structured
as follows: Subsection III-A extracts explicit neuron ODEs
via current balance DAEs and back-substitutions, Subsection
III-B models triangle generator response to a neural spike, and
Subsection III-C derives a complete expression for the input
current to a neuron. We provide useful approximations where
appropriate (using circuit-level intuition) and separate terms
into static and dynamic quantities to accelerate computation.

A. Neuron

The DAE system for the FH neuron [6] can be extracted
by balancing currents on each node of the neuron circuit:
the membrane potential (Vmem), the potassium potential (VK),
the sodium potential (VNa), and the gating voltage (Vg) and
isolating the time-dependence of each nodal voltage:

V̇mem =
CNaV̇g + CK V̇k + Iin + Il + INa 9 IK

Cmem + CNa + CK
, (1)

V̇K = V̇mem 9 Iτn/CK , (2)

V̇Na =
(
CzV̇g+Iamp+Iτh 9Iτm

)/
(Cz+Cl) , (3)

V̇g =
(
CNaV̇mem+CzV̇Na9Iτh

)/
(CNa+Cz+Cw) . (4)

Eq. 1-4 provide a concise representation; however, they are
implicit in the differentials and thus not suitable for explicit
solution on an FPGA. To make Eq. 1-4 more explicit, a series
of back-substitutions are performed so that each differential
is only a function of the input and FET channel currents. We
begin by substituting Eq. 3 into Eq. 4:

V̇g=
(
CNa(Cz+Cl)V̇mem+Cz(Iamp9Iτm)9ClIτh

)/
C2

α, (5)

where C2
α := (CNa + Cz + Cw)(Cz + Cl)− C2

z . (6)

We then substitute Eq. 2 and Eq. 5 into Eq. 1 and simplify:

V̇mem = (CNaCz(Iamp9Iτm)9CNaClIτh))
/
C3

β+

C2
α(Iin + Il + INa 9 IK 9 Iτn)

/
C3

β ,
(7)

where C3
β := (Cmem+CNa)C

2
α9C

2
Na(Cz+Cl). (8)

We can sequentially continue the back-substitution and recast
equations into a state variable formulation. State space ap-
proaches are popular in linear systems analysis and provide
insight into the FH neuron as will be further explained in
Section IV. Normalizing all nodal and supply voltages by the
thermal voltage UT (so V1,: = V:/UT , V1,: → V:), we obtain:

V̇ =
[
V̇mem V̇K V̇g V̇Na

]T
= ΨI/UT ; where (9)

I =
[
Iin Il INa Iamp Iτm IK Iτn Iτh

]T
, and (10)

Ψ =

c11 c11 c11 c14 9c14 9c11 9c11 9c18
c11 c11 c11 c14 9c14 9c11 9c27 9c18
c31 c31 c31 c34 9c34 9c31 9c31 c38
c14 c14 c14 c44 9c44 9c14 9c14 9c48

 , wherein (11)

cij :

c11=C2
α

/
C3

β

c14=CNaCz

/
C3

β

c18=CNaCl

/
C3

β

c27=C2
α

/
C3

β+1/CK

c31=CNa(Cz+Cl)
/
C3

β

c34=Cz

/
C2

α+C2
NaCz(Cz+Cl)

/
C2

αC
3
β

c38=Cl

/
C2

α+C2
NaCl(Cz+Cl)

/
C2

αC
3
β

c44=
(
1+C2

z

/
C2

α

)/
(Cz+Cl) + C2

NaC
2
z

/
C2

αC
3
β

c48=
(
ClCz9C2

α

)/
C2

α(Cz+Cl)+C2
NaClCz

/
C2

αC
3
β

(12)

Since neuron FETs operate subthreshold, I is algebraically
computed from EKV models [27], where the channel currents
for a pFET and an nFET are (respectively)

Ip(Vs, Vg, Vd,W/L)= I0,p (W/L)
[
e9κpVg

(
eVs9eVd

)]
, (13)

In(Vd, Vg, Vs,W/L)= I0,n (W/L)
[
eκnVg

(
e9Vs9e9Vd

)]
, (14)

where Vs, Vg , and Vd, denote the voltages on the source,
gate, and drain terminals (each normalized by UT); W/L
denotes the FET dimension ratio; and κp and κn denote the
gate-channel coupling coefficient of a pFET and an nFET,
respectively. Furthermore, I0,p and I0,n can be expressed as

I0,p = Ith,p exp (κp (VDD − Vt0,p)− VDD) , (15)
I0,n = Ith,n exp (−κnVt0,n) , (16)

where Ith,p and Ith,n denote the pFET and nFET threshold
current, respectively. In Eq. 13 and Eq. 14, positive currents
flow from source to drain (pFET) and from drain to source
(nFET), respectively. Denoting an element-wise product as ⊙,
for the sign convention in Fig. 3, I ≈ ζ⊙ Ĩ , where

ζ=

1
MτlI0,pe

9κpVτl+El

MNaI0,pe
ENa

MampI0,pe
Vamp

MτmI0,ne
κnVτm9Vsat

MKI0,p
9MτnI0,pe

9κpVτn+Vgk

MτhI0,pe
9κpVτh

, Ĩ=

Iin
1 9 α1e

Vmem

e9κpVNa
(
19eVmem9ENa

)
e9κpVg

1 9 α2e
9VNa

e9κpVK
(
eVmem9eEK

)
1 9 α3e

VK

eVg9eVNa

, (17)

where α1= exp (9El), α2= exp (Vsat), and α3= exp (9Vgk) and
where the approximation leverages that Vamp ≫ VNa + 3.
If we simplify the expressions for the Na and K channels to
neglect the Ohmic region, the waveforms during continuous
spiking remain mostly unchanged, but dynamical transitions
near the bifurcation points become more pronounced. In Eq.
17, ζ and α: are constant and can be precomputed. Conse-
quently, Eq. 9 can be rewritten as follows, consolidating static
terms into state transition matrix T to expedite computation:

V̇ = T Ĩ , where T = Ψ⊙
(
ζ
[
1 1 1 1

])T
/UT . (18)

B. Triangle Generator

Triangle generators, which feed into the control gates of
FG FET synapses, mimic the behavior of the Rall Alpha
function in response to a neural spike [7]. A triangle generator
is an asymmetric integrator, where the top (Msc) and bottom
(Md) transistors in the stack (in subthreshold saturation) act

5

46

48

50

52

V
m

em
 (

U
T

)

12
14
16
18

V
K

 (
U

T
)

16
20
24
28

V
N

a (
U

T
)

0
25
50
75

100

V
in

t (
U

T
)

Excitatory (e)

Inhibitory (i)

0 5 10 15 20 25 30 35 40 45
Time (ms)

-1
-0.5

0
0.5

1

I sy
n
 (

A
.U

.)

Excitatory
Inhibitory

Fig. 4. Neuron nodal voltages, triangle generator nodal voltages, and post-
synaptic currents of the FP neuron given a 150pA step input. At this high
spike rate, excitatory post-synaptic currents become stronger via “stacking.”

as constant current sources to linearly charge or discharge
the integration capacitance (Cint) depending on the spike
detection comparator state (ξ). When ξ = 1 (i.e. during a
neuron spike), the stack drains a current of MdI0,ne

κnVbn out
of Cint, and when ξ = 0, the stack sources a current of
MscI0,pe

−κpVbp+VDD into Cint. Biases Vbp and Vbn allow
for independent tuning of triangle generator attack and decay
rates, respectively, aiding exploration into the effect of post-
synaptic current rise/fall times on network dynamics.

We simulate two triangle generators for each neuron, where
one controls excitatory synapses (via Vtri,e), and the other
controls the inhibitory synapses (via Vtri,i). While several
integration rate configurations perform adequately insofar as
the integrated excitatory and inhibitory post-synaptic currents
are balanced after synaptic weighting [28], meaningful tun-
ings can help the simple synaptic circuits better emulate the
spatial and electrochemical aspects found in biological neural
networks. This, when selecting integration rates, it is vital to
recognize: (1) in biological neurons, inhibitory connections
are more proximal to the soma than excitatory connections
[29], and (2) excitatory and inhibitory channels are gated by
different molecular species and follow different rate laws [7].
In this work, we set the pull-down and pull-up on the inhibitory
triangle generator to be roughly two times faster and eight
times slower, respectively, than the excitatory triangle gener-
ator as suggested by the figures in [30]. The integrator output
voltage in the excitatory and inhibitory triangle generators can
be expressed in the following state variable formulation, which
can be evaluated entirely using a lookup table:

[
V̇int,e V̇int,i

]T
=

1

CintUT

[
MdI0,ne

κnVbn,E MsI0,pe
9κpVbp,E+V DD

MdI0,ne
κnVbn,I MsI0,pe

9κpVbp,I+V DD

][
9ξ
19ξ

]
(19)

where output voltages are normalized by UT . To ensure out-
puts do not exceed the rails, conditional statements are used in
the code. Integrator outputs are then offset and linearly scaled
to produce Vtri,e and Vtri,i before being input into the control
gates of FG pFET synapses. In practice, the scaler circuit,
which is represented as an ideal resistive voltage divider in
Fig. 3, would be composed of FETs in a complementary
MOS implementation. These scaler circuits adjust the rail-rail
integrator outputs such that Vtri,e is close to VDD and Vtri,i is

close to ground and such that the effective peak-peak voltage
on the gates of the synapse FETs is limited between 3UT and
4UT . The final triangle generators outputs are given by[

Vtri,e

Vtri,i

]
=

Rl

Rh +Rl

[
Vint,e

Vint,i

]
+

[
Voff,e

Voff,i

]
. (20)

C. Synapse

The synapses in our model are represented by control gate-
coupled FG pFETs [7]. The sources and drains of excitatory
synapses are connected to VDD and the membrane of the
post-synaptic neuron, respectively. In contrast, the sources and
drains of inhibitory synapses are connected to the membrane
of the post-synaptic neuron and ground, respectively. FG
pFETs are modeled like normal pFETs, except that the gate
voltage is related to the applied control gate voltage (VCG)
by: VFG ≈ VFG,0 + kCGVCG, where VFG,0 and kCG denote
the programmed FG voltage and the capacitive coupling coef-
ficient of the control gate (which generally ranges between 0.7
and 0.8), respectively. Defining an effective coupling factor:
κf = κpkCG, the input current of the n neurons in a network
in the presence of an external input current vector (Iext) and
triangle generator outputs from other neurons is given by

Iin,1...
Iin,n

 = MsynI0,p(W ⊙ S)

e9κfVtri,ex,1

e9κfVtri,ih,1

...
e9κfVtri,ex,n

e9κfVtri,ih,n

+ Iext, (21)

where W is a static matrix whose elements represent both
network connectivity and “synaptic strength:”

W =

e9kpw1,1e e9kpw1,1i . . . e9kpw1,ni

e9kpw2,1e e9kpw2,1i . . . e9kpw2,ni

...
...

. . .
...

e9kpwn,1e e9kpwn,1i . . . e9kpwn,ni

 , (22)

where the values of wi,j: correspond to the programmed
FG voltage normalized by UT with lower values indicating
stronger synaptic connections. Connections with large wi,j

values (≥ VDD), or no connection at all, are represented
by zero elements in W . Since neurons are usually either
excitatory or inhibitory in function, W is sparse (with less
than half of its elements attaining nonzero values). In Eq.
21, S is a scaling matrix that accounts for synapse source
dependence. Although both types operate in subthreshold sat-
uration, excitatory synapses have a constant potential (VDD)
on their sources while inhibitory synapses have time-varying
membrane potentials on their sources. In particular, the chan-
nel current of inhibitory synapses scale with 1− exp (Vmem);
thus, since ∀i, Vmem,i ≫ 3, S is approximated by

S ≈

eVDD 9eVmem,1 eVDD . . . 9eVmem,1

eVDD 9eVmem,2 eVDD . . . 9eVmem,2

...
...

...
. . .

...
eVDD 9eVmem,n eVDD . . . 9eVmem,n

 . (23)

Typical parameters for the neuron and synaptic circuits ana-
lyzed in this section (chosen to approximate the time constants

6

TABLE II
TYPICAL NEURON AND SYNAPSE CIRCUIT PARAMETERS

Transistor Dim. Ratios (µm) Voltages (UT) Capacitances (fF) Other Physical Parameters
Ms 2/0.6 MNa 1/0.6 Vt0,p 28 Vbp,i 89 Vsat 15.4 VDD 100 Cint 20 Cl 8 UT 25mV Ith,p 125nA
Md 1/0.6 MK 1/0.6 Vt0,n 20 Vbn,i 7.2 Vτn -27.2 Vthr 47 Cmem 800 Cw 8 kp 0.75 Ith,n 300nA
Msyn 1/0.6 Mτn 1/0.6 Vτl 18 ENa 52 Vgk 14 Vτh -10.8 Cz 120 kn 0.67
Mτm 12/0.6 Mτh 1/0.6 El 46 Vamp 57.6 EK 46 Vτm 28.5 CNa 960 Rl 0.5GΩ
Mamp 12/1.0 Mτl 1/0.6 Vbp,e 87.2 Vbn,e 5.2 Voff,i 10 Voff,e 90 CK 400 Rh 9.5GΩ

and dynamics in [6], [7]) are presented in Table II. Fig. 4
demonstrates exemplary voltages on the neuron and triangle
generator nodes as well as the corresponding post-synaptic
currents during continuous spiking.

IV. FIXED-POINT REFORMULATION

The conversion of the FH model from an FP to an FXP
representation, as depicted in Fig. 2, involves multiple steps
including several changes of variables to make the problem
better-posed and function approximations. However, this pro-
cess introduces numerical errors which must be assessed in
relation to the computational overhead.

A. System Scaling and Conditioning

Our formulation is ill-scaled due to the disparity between
the small magnitudes of several elements in T and the large
exponents in I , which in turn results from the resting offset
of each nodal voltage. To mitigate this scaling issue, we apply
a three-step process. The first step entails performing the
following change of variables to the neuron nodal voltages:
V2,: = V1,: − γ1,:, V2,: → V:, where γ1,: denotes the resting
offset (i.e., the DC operating point) of each nodal voltage.
Then, the γ1,: terms can be factored from the exponentials in I ,
reformulating each exponential as a scaling factor multiplied
with an exponential that is unity-valued at DC conditions.
Subsequently, we identify and isolate the largest scaling factor
within the terms for each row of I . We can then implement
the third step, which is to absorb the isolated factors into
the corresponding columns of T . Any remaining scaling
factors can then be absorbed into α: constants (if available) or
reintegrated into their corresponding exponentials.

Following scaling, T may obtain a large condition number
due to differences in capacitances and in FET DC currents. A
large condition number, representing a large eigenvalue spread,
can potentially introduce substantial numerical errors during
derivative computation. We conduct an additional scaling of
T to improve its condition number. This step is performed by
introducing controlled offsets to each nodal voltage using the
solution of an NLP. This corresponds to performing another
change of variables while following the same scaling strategy
as the previous paragraph: V3,: = V2,: − γ2,:, V3,: → V:. The
NLP solved to optimize offsets is formulated as:

γ2,: := argmin
xoff

[cond (T (xoff))] . (24)

All elements of T are defined by parameters from the physical
analog neuron circuit in Fig. 3, representing inverses of the
time constants arising from connecting each FET current
source to its corresponding nodes. Extreme magnitude vari-
ation among the elements of T seldom arise in properly tuned

FH neurons, as time constants will be within the same order of
magnitude. Nevertheless, for the parameters specified in Table
II, the combined scaling and conditioning approach is valuable
in that it reduces the condition number (and hence derivative
estimation error) 4.5 times, from 5,084 to 1,112.

Finally, considering that the neuron time constants fall in the
millisecond range, we scale the time variable by a factor of
1000 via a change of variables: t1 = 1000t, t1 → t. This both
converts the time unit to millisecond and brings element mag-
nitudes in T closer to unity for convenience of representation.
In summary, this comprehensive approach effectively resolves
scaling and conditioning issues, providing a more numerically
stable solution without increasing implementation difficulty.

B. Fast Base-2 Exponentiation

Eq. 18 includes natural exponents, which are costly for
embedded systems. Yet, our application only requires a cou-
ple bits of precision, so we can utilize faster, approximate
exponentiation approaches. Our solution proceeds by replac-
ing natural exponents with base-2 exponents (utilizing the
identity: eV/UT = 2V/UT ln(2)) and performing an additional
change of variables for UT -normalized voltages (V2,: =
V1,:/ ln (2), V2,: → V:), allowing us to rewrite Eq. 18 as:

V̇mem

V̇K

V̇g

V̇Na

= T̃

Iin
1 9 α12

Vmem

29κpVNa
(
192Vmem9ENa

)
29κpVg

1 9 α22
9VNa

29κpVK
(
2Vmem92EK

)
1 9 α32

VK

2Vg92VNa

; T̃=

T / ln(2)

1000
, (25)

where voltages are in units of UT ln(2). Low-order polynomi-
als can be used to approximate 2x with an accuracy of ±1%.

To ensure continuity in neural responses, we can start with
a continuous, piecewise approximation for 2x that linearly
interpolates between 2⌊x⌋ and 2⌈x⌉ (proposed by [31]):

ϕl(x) = 2N (1 + ∆) ; where N = ⌊x⌋, ∆ = x−N. (26)

In a FXP implementation, we can use bit-masking to find the
integral digits (N) and the fractional residue (∆) and use
a bit shift operation to compute 2N . Eq. 26 unfortunately
overestimates the value of 2x by up to 6% [Fig. 5]. Informed
by the error function shape in Fig. 5(a), we introduce an
error reduction method that multiplies a correction term that
is quadratic in ∆ to Eq. 26. Since the error of ϕl(x) is already
small, any correction term should prioritize computational
speed over accuracy. Therefore, we can append an empirically
derived correction term to Eq. 26 for improved accuracy:

ϕc(x) = 2N (1 + ∆)(0.25(∆2 −∆) + 1), (27)

7

-2 -1 0 1 2

Approx.
True Value

x

-1

-0.5

0

E
rr

o
r

(%
)

Cubic

-2 -1 0 1 2
0

0.5

1

1.5

2

2.5

3

3.5

4

2
x

Approx.
True Value

0

2

4

6

E
rr

o
r

(%
)

Linear

x
Hybrid Approach

61 Ops / State Update

71 Ops / State Update

106 Ops / State Update

Fig. 5. Comparison of fast linear and cubic approximations of 2x based
on interpolation and empirical error correction. A good trade-off between
dynamical accuracy and computational intensity is achieved via a hybrid
approach using both exponent approximations.

where multiplication by 0.25 can be performed using a bit-
shift operation. Eq. 27 is accurate to ±1%, but it is more
computationally intensive than Eq. 26 [Fig. 5]. Neuron dy-
namics can diverge considerably from the FP model, especially
near the threshold current, if ϕl is exclusively used. In fact,
exclusive usage of ϕl can cause network dynamics to diverge
from the FP model – for example, after exciting a synfire
chain, self-sustaining oscillations present in the FP model are
no longer observed. In contrast, exclusive usage of ϕc yields
good dynamical accuracy with a high penalty in the number
of operations to update neuron state variables. As shown in
Fig. 5, intermixing ϕl and ϕc yields a “balanced” model that is
dynamically accurate with only a slight increase in the number
of operations relative to a model using exclusively ϕl:

V̇mem

V̇K

V̇g

V̇Na

= T̃

Iin
1 9 α1ϕc(Vmem)

ϕl(9κpVNa)(1 9 ϕl(Vmem 9ENa))
ϕl(9κpVg)

1 9 α2ϕl(9VNa)
ϕc(Vmem 9 κpVK) 9ϕl(EK 9 κpVK)

1 9 α3ϕl(VK)
ϕl(Vg) 9 ϕl(VNa)

. (28)

Eq. 28 is used for all FXP computations henceforth. Note that
ϕl suffices for all synaptic computation.

C. Conversion of Floating-Point Models to Fixed Point

To facilitate the creation of FXP models, equivalent bare-
bones FP models are created in MATLAB and C. We begin
by simulating the approximate ODEs for the neuron and
triangle generator FP models in MATLAB and C using a
fixed-step, explicit Euler ODE solver, utilizing approximate
base-2 exponents to verify functionality. The explicit Euler
method (a first-order method) is used due to its simplicity,
especially for implementing a sampled, real-time system.
Subsequently, the MATLAB Fixed-Point Converter application
is employed to determine the range of each variable and to
estimate the required number of integer and fractional bits for
each constant and variable while maintaining a robust safety
margin. Notably, the Fixed-Point Converter is also capable of
generating example FXP code for preliminary error analysis.

The use of the Fixed-Point Converter revealed that the
explicit Euler solver fails to converge for a 16-bit model given
a step input current exceeding the threshold for continuous
spiking. At the minimum, the FXP model must preserve the
transition in dynamics near the the beginning and end of
the input current versus frequency (IF) curve (i.e., starting
and stopping behavior) and IF curve monotonicity (discussed
further in the subsequent subsection). Throughout this process,
the FP model, is used to identify a feasible range of Euler
step sizes while finding the minimum bit width for conver-
gence. Once convergence is established, we verify appropriate
dynamical behavior for step inputs across the entirety of the
IF curve. We found that a 32-bit model convergences with
minimal error across the IF curve. Note that even if the
computation can be done using fewer number of bits, thereby
reducing memory cost, the step size typically needs to shrink
substantially to maintain accuracy, significantly increasing
computation cost. Given the importance of solution accuracy
and speed in this work, we chose to proceed with a 32-
bit model representation. Different variables require different
representations to prevent overflow. For instance, neuron nodal
voltages are represented in Q24.8 format, triangle generator
output voltages are in Q16.16 format, and the outputs of the
exponential function are represented in Q8.24 format. The op-
timization of number systems to reduce resource utilization is
platform-dependent. Drawing on insights from the Fixed-Point
Converter, we developed FXP C models from the barebones
FP C models. This approach allows for superior optimization
for computation speed over MATLAB-generated C code.

D. Analysis of Model Behavior and Error

Characterizing errors emerging from the conversion from a
FP to a FXP representation is of paramount importance. These
numerical errors can originate from several sources, including
repeated additions (where an optimal step size is critical for
the error magnitude [32]), the assigned precision for variable
containers, and approximate exponentiation.

The shape of the nodal voltages for the FXP and FP neuron
models during continuous spiking are quite similar [Fig. 6(a)].
The responses of both models to step input currents align
closely with each other and reflect true biological behavior. For
instance, a small step elicits a single spike from the neuron,
with a few additional spikes observed upon a slight increase
in the step height. Both models have a threshold current,
albeit different, beyond which the neuron fires continuously,
indicating a stable limit cycle. As the current escalates, there is
a concurrent increase in the firing frequency and the minimum
voltage during the hyperpolarization phase. However, past a
certain input level, the spike rate decreases, and the neuron
ceases to spike continuously, as depicted in Fig. 6(b).

The IF curves of the FXP point and FP models, which
represent the portion of the input space where a stable limit
cycle exists, are shown in Fig. 6(c). The IF curve also helps
one tune input synapses to obtain the current needed for the
neuron to spike at a given frequency. Notice that the FXP
model has a higher starting current and lower ending current,
but the overall profile and the monotonicity of the IF curve

8

F
re

q
u
en

cy
 (

H
z)

Input Current (pA)

30 40 50 60 70 80 90 100 110 120 130 140 150

45

55

65

75

85

95

105

Floating Point

Fixed Point

V
m

e
m

 (
U

T
ln

(2
))

0

2

4

0

2

4

0

2

4

10 20 30 40 50
-2

Scaled Time (ms) Input Current (pA)

N
M

A
E

 (
%

)
N

R
M

S
E

 (
%

)
r-

v
al

 (
%

)

Time (ms)

V
m

e
m

 (
U

T
ln

(2
))

V
K

 (
U

T
ln

(2
))

V
N

a
 (

U
T

ln
(2

))

-3

2

8

0 20 40 60 80 100
-20

-10

0

Iin,fixed = 45pA

Time (ms)

V
m

e
m

 (
U

T
ln

(2
))

-2

0

2

4

-2

0

2

4

0 20 40 60 80 100

Iin,float = 25pA

Iin,fixed = 35pA

Iin,float = 30pA
Iin,fixed = 40pA

Iin,float = 80pA Iin,fixed = 80pA

Time (ms)

V
m

e
m

 (
U

T
ln

(2
))

-2

0

2

4

-2

0

2

4

-2

0

2

4

0 20 40 60 80 100

Iin,float = 288pA
Iin,fixed = 257pA

Iin,float = 192pA

Iin,fixed = 182pA

Iin,float = 120pA Iin,fixed = 120pA

(a) (b)

(c) (d) (e)

-2

0

2

4

-2

0

2

4

0

2

4

0

10

20

96

98

100

50 60 70 80 90 100 110 120 130

6

Fig. 6. (a) Nodal voltages of the FXP neuron given a 45pA input. (b) Comparisons FP (black, dotted line) and FXP (blue, solid line) model spikes for step
inputs of different peak levels. Both models only spike once for small inputs, and the models spike twice when the input peak level is increased slightly.
Beyond a threshold level, the neurons spike continuously with a rate which rises with rising input current. Beyond some input current, both models stop firing
continuously; the models only fire a few times in this region, mirroring the behavior observed before the start of the continually spiking region. (c) IF curves
showing the mean spiking frequency in the continually spiking region with respect to the input current for the FP and FXP models. (d) FP and FXP spikes
plotted on scaled time axes for a few input currents such that peaks overlap. Although the spiking frequency differs between the models, overall spike shapes
are preserved during conversion from a FP to a FXP representation. (e) Three error metrics (NMAE, NRMSE, and Pearson r-val) for the FXP model as a
function of the input current. Error analysis is performed by comparing the FP and FXP model responses on the scaled time axes described in (c).

(its most important characteristics) are preserved between the
models. The IF curve indicates that there is a slightly different
time scale between the models, but if the time axis of the
FP model output is stretched so that the spike peaks of both
models overlap [Fig. 6(d)], we find that the shape of the spikes
are well-preserved after conversion from FP to FXP.

To systematically characterize errors in the shape of the
spikes in scaled time, we introduce three metrics, each selected
on its merit to provide unique insights into error characteris-
tics: NMAE, NRMSE, and Pearson correlation coefficient (r-
val), which are plotted across the range of the IF curve [Fig.
6(e)]. NMAE characterizes the mean FXP error intuitively, as
a percent of the FP output range; NRMSE (RMSE normalized
by the standard deviation of the truth) characterizes the FXP
error signal energy as a percent of the FP output energy; and
r-val characterizes how well the depolarization, repolarization,
and hyperpolarization phases align between the FXP and FP
model. We have defined NMAE and NRMSE as follows:

NMAE :=
∥Xfix −F (Xfloat)∥1

/
N

max (Xfloat)−min (Xfloat)
× 100%, (29)

NRMSE :=
∥Xfix −F (Xfloat)∥2
∥Xfloat − ⟨Xfloat⟩∥2

× 100%, (30)

where Xfloat and Xfix denote the vectors corresponding
to Vmem at each timestamp for the FP and FXP model,
respectively, N denotes the number of points in Xfloat, and F
denotes a function that interpolates the corresponding value of
Xfix in scaled time. In this work, F is a PCHIP, since PCHIPs
are well-behaved around extrema and edges with minimal
overshoot. Overall, we find that shape error is generally low,

yet it is the lowest across the center region of the IF curve.
Our mean NMAE is lower than the NMAE of other previous
approaches [9], [22], [25]. At lower input currents, the slight
drop in the correlation between the FP and FXP models
signifies an enlarged dissimilarity in action potential phase
timing. The resulting distortion in the spike shape can be
attributed to the impact of truncation errors on the dynamics of
our coupled nonlinear ODE system. Truncation errors are more
prominent at smaller input currents where they cause a greater
percentage change in the Euler step derivative estimate since
derivatives are generally lower at lower spike rates. Never-
theless, our low shape error highlights the effectiveness of our
approach in navigating the complex interplay among precision,
performance, and biological relevance, despite sources of error
during the conversion from a FP to a FXP representation.

V. NETWORKS UTILIZING THE FIXED-POINT MODEL

In the pursuit of accurate models for biological neural
pathways, it is essential to explore network architectures with
a focus on biorealism. Adherence to biological principles
facilitates efficient resource scaling with neuron count. In
contrast to contemporary neuromorphic designs, often charac-
terized by fully connected networks where every neuron can
potentially connect to all others [33], which leads to space
complexities of O

(
n2

)
, biological systems present a markedly

different architecture. Biological systems typically consist of
dynamically rich neurons sparsely and locally connected to
approximately 500-5,000 synapses (largely invariant through
signal processing hierarchies), resulting in space complexities
close to O(n) [34]. Compute energy cost is closely linked

9

Neurons in Chain

T
im

e
N

ee
d

ed
 f

o
r

1
 s

 o
f

S
im

u
la

ti
o

n
 (

s)

(c) (d)

0

1

2

3

4

5

6

7

8

9

10

N
eu

ro
n

10
4

0 50 100 150 200

Time (s)

0

50

100

I ex
t (

p
A

)

0.1 0.14
0

20

40

226.85 226.95
9.994

9.996

9.998

10
10

4

1 2 3
Iext,1

(a)

V
m

em
 (

U
T

 l
n

(2
))

Time (ms)(b)

I e
x

t
(p

A
)

0

50

100

Iext,1

-2

0

2

4

1

2

3

Neuron 1

Neuron 2

Neuron 3

N
eu

ro
n

0 20 40 60 80 100 120

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

Fig. 7. (a) A recurrent, three-neuron 1D synfire chain with solely excitatory
connections. (b) Response of the 1D synfire chain in (a) to an external
current pulse. Here, all synapses are homogeneous, and the input current
exceeds the maximum synapse channel current. The input causes the neurons
to spike in succession; after the input is nulled, the recurrent, positive feedback
connection maintains a stable oscillation. (c) Measured execution time to
simulate 1 s of 1D synfire chain activity versus network size; the simulations,
which confirm the prediction of O(n) time complexity, use a single core of
an Intel i9-13900K CPU at a clock speed of 5.6GHz. (d) Raster plot of a 1D
synfire chain containing 100,000 FH neurons. After excitation, the network
cyclically propagates spike fronts; the number of concurrently spiking neurons
is an invariant quantity matching the population of initially excited neurons.

to space complexity, and sparse routing schemes contribute
significantly to biological energy efficiency [35]. These obser-
vations suggest that our proposed approach of using dynam-
ically rich FH neurons and sparse connections would open
avenues for energy-efficient large-scale analog neuromorphic
processing by mitigating the large energy burden of spike
routing in contemporary approaches without digitally assisted
addressing [33]. This work initiates exploration of biologically
plausible (locally connected) networks of FH neurons by
examining the dynamics and scaling of recurrent 1D synfire
and feedforward 2D synfire chains with exclusively excitatory
synapses, followed by an investigation of a WTA network
containing several inhibitory synapses.
A. Recurrent 1D Synfire Chains

Synfire chains, which are prevalent in biological motor path-
ways, consist of interconnected pools of neurons that enable
the sequential transmission of spike packets, forming a chain-
like firing pattern. In synfire chains, external input currents
excite an input neuron pool, and the outputs of the spike
packets generated by the input pool initiate the propagation of
spike packets to subsequent pools via predominantly excitatory
connections [36]. Synfire chains may also include recurrent
connections among layers. Synfire chains are a mode of long-
range communication in biological neurons [36] and serve as
benchmark for sparse, large-scale neural simulation.

We begin our network exploration with a recurrent 1D
synfire chain in which an external input stimulates the first
neuron, each neuron subsequently excites the next, and the last
neuron reexcites the first, establishing a chain-like sequence

1

100k

Iext,1

2
Iext,2

100
Iext,100

101

(a)

(b) 40 60 80
Time (ms)

0

100

200

300

400

500

600

N
e
u
ro

n

n
0

=100,
0

=4 ms

40 60 80
Time (ms)

n
0
=46,

0
=1 ms

40 60 80
Time (ms)

0 0.5 1 1.5 2 2.5 3 3.5
Time (s)

0

1

2

3

4

5

6

7

8

9

10
10

4 n
0
=100,

0
=1 ms

Fig. 8. (a) 100,000-neuron heterogeneous feedforward synfire chain contain-
ing 1000 layers with 100 neurons each. Adjacent layers are fully connected
with positive normally distributed synaptic weights as depicted in the weight
matrix W . W is depicted in grayscale, where darker shades indicate stronger
connections and pure white indicates an absence of synaptic connections. (b)
Raster plot of the response of the network in (a) to a spike packet applied to n0

neurons of the input layer with arrival times drawn from a normal distribution
with a standard deviation of σ0 and mean of 50ms. Packets desynchronize
either when n0 is too small for the given σ0, or when σ0 is excessive for
the given n0, showing the existence of a bounded region in (σ0, n0) space
supporting long-term spike packet propagation, as expected from biology.

of firing activity. Recurrent 1D synfire chain containing 3-
100,000 FH neurons are demonstrated in Fig. 7 using our
FXP neuron model. As verified in Fig. 7(c), simulations of
FH neuron 1D synfire chains have a time complexity of O(n),
and the space complexity also scales as O(n).

B. Feedforward 2D Synfire Chains

Though closely related (with O(n) space complexity), feed-
forward 2D synfire chains have higher synaptic density and
dynamical richness compared with the recurrent 1D synfire
chains. In our demonstration in Fig. 8, we have implemented
a heterogeneous 2D synfire chain of 100,000 FH neurons
(1000 layers containing 100 neurons) using our FXP model.
This network has nearly 10 million synaptic connections (with
normally distributed weightage) due to the full connectivity
between adjacent layers. Although our network architectures
are fixed after initialization in this work, one could also add a
noise term to the triangle generator biases and to the synapse
FG voltages for modeling stochastic synaptic transmission
delays and stochastic synaptic weights, respectively.

In each of our simulations in Fig. 8, we introduce a brief
spike packet with normally distributed spike arrival times into
a subset of input neurons. Our simulations reveal distinct
parametric limits governing the long-term survival of spike
packets in heterogeneous synfire chains. We show that spike
packet desynchronization occurs under two conditions: either
when an insufficient number of neurons receive the input spike
packet for the existing level of stochasticity in the spike arrival
times, or when the stochasticity in the spike arrival times is
excessive for the given number of input neurons receiving the
input spike packet. These observations align with established
computational neuroscience modeling [37], underscoring the
bioaccuracy of the FH neuron and synaptic circuits.

10

(a)

1 2 3

Iext,1 Iext,2 Iext,3

4

Iext,4

5

V
m

em
 (

U
T

 l
n
(2

))

Time (ms)(b)

I e
x

t
(p

A
)

-2

0

2

4

1
2
3
4
5

0 10 20 30 40 50 60
0

20
40
60

Neuron 5

Neuron 2Neuron 3

Neuron 4

Iext,4
Iext,3

Iext,2Iext,1

Neuron 1

N
eu

ro
n

Fig. 9. (a) Five-neuron spiking WTA network. The first four neurons receive
external input currents and excite the fifth neuron. The fifth neuron in turn can
inhibit all other neurons. (b) Response of the WTA network in (a) to input
current pulses with different peak levels using FXP modeling. In a WTA
network, the most excited input neurons win by inhibiting the least excited
input neuron; inhibition continues until only the input neuron with the highest
input current (most excitation) is left spiking. The synapse weights used here
are tuned so that each spike of the inhibitory neuron (i.e., neuron 5) causes
an “elimination.” Note that the current pulses here are set up such that at their
peak levels, Iext,1 > Iext,2 > Iext,3 > Iext,4.

C. Winner-Take-All Structures

WTA behavior is found in biological networks where one
or more neurons remain excited while competing with and
inhibiting other neurons in the pool. Winning neurons use
nonlinear inhibition to suppress the spiking of other neurons
in the pool. WTA behavior can be efficiently emulated in
analog circuits and can act as a powerful framework [38] for
solving learning and classification problems [39], [40]. WTA
was first shown in a non-spiking form by Lazzaro, where
the implementation achieved an O(n) interconnect complexity
[41]. We show spiking WTA dynamics with our FXP model
by forming a 5-neuron network as shown in Fig. 9(a). In this
demonstration, we homogenize the network, so there are only
two synaptic weights: excitatory and inhibitory. The excitatory
weight is set so that the synapse strength is sufficient to excite
the inhibitory neuron through its entire IF curve. We then
set the inhibitory weight so the inhibitory neuron eliminates
one input neuron with every spike. The simulation results in
Fig. 9(b) confirm that the desired WTA function is achieved
with O(n) time complexity. In other words, the number of
inhibitory spikes needed to determine the neuron with the
largest input current mirrors the number of input neurons.
Furthermore, the space complexity also scales as O(n).

VI. DISCUSSION

This section provides more insight on two topics: (1) the
complexity of the FH model in comparison to other neuron
models in both FP and FXP representations and (2) the
efficacy of our approach of converting from a FP to a FXP
representation. We begin the discussion by comparing the FP
model of the FH neuron to other previously proposed types of
FP neuron models in Table III [20], [42].

The biological plausibility of a model is determined by
considering the number of biologically relevant parameters
used in the model formulation and how well the model reflects

TABLE III
COMPARISON OF FLOATING-POINT NEURON MODELS

Neuron Model State Bio- FP Ops Max Step Dig. Power
Variables realistic Per Step Size (ms) Draw (AU)

Integrate & Fire [15] 1 No 5 1.000 1.00
Izhikevich [16] 2 No 13 1.000 2.60
FHN [43], [44] 2 No 18 0.250 14.4
AdEx [45] 2 No 24 1.000 4.80
Hindmarsh-Rose [46] 3 No 30 0.250 24.0
Wilson [47] 4 No 45 0.250 36.0
Morris-Lecar [18] 2 Yes 60 0.100 120.
HH [13] 4 Yes 120 0.075 320.
FH (Proposed) 4 Yes 144 0.020 1440

the original HH neuron model, which is widely regarded as
the gold standard. Note that the FH model utilizes transistors
to represent the ion channel conductance response during the
HH voltage clamp experiments and preserves the original time
constants (τm, τh, and τn) [6]. Furthermore, the FH model
exhibits the same Hopf bifurcation structure as the HH neuron
[8], providing additional evidence for its biological plausibility
and supporting our proposed formulation.

For large sparse networks, as typical in biology, memory
utilization scales with the number of state variables (column
2 of Table III), provided that constants are not replicated. The
compute power requirement for implementing a specific model
is roughly proportional to the number of FP operations per Eu-
ler step and inversely proportional to the maximum (reliable)
step size available to a fixed-step-size solver. Table III presents
a normalized power metric reflecting this observation.

The digital FH model power metric is inflated by the
requirement for its maximum step size. Maximum step size
is indicative of the “stiffness” of the corresponding system of
ODEs; consistent with other dynamical systems in subthresh-
old MOS [32], the stiffness of the FH model is inherently
high. Compared to the other two biologically plausible models
in Table III, the FH model also requires 24 and 84 more FP
operations per Euler step than the original HH neuron model
[13] and the Morris-Lecar model [18], respectively. Therefore,
comparing the FH model to the HH model, it appears that our
model is slightly more computationally expensive. However,
out of the 144 FP operations, 64 FP operations (32 additions
and 32 multiplications) compose a single MAC operation in
our model formulation, involving a multiplication of a 4x8
matrix with an 8x1 vector. This approach aligns well with cur-
rent trends in ML, where ML accelerators incorporate built-in
MAC units to make MACs less expensive than expected from
a straightforward calculation of the number of FP operations.

The remainder of this section presents a comparative break-
down of the computational power and memory requirements
for our FXP model given a generic digital platform to demon-
strate that the resource requirements are reasonable compared
to previous HH neuron approaches and so that the reader can
evaluate maximum network sizes for their platform of choice.

Our FXP model necessitates a global memory of 188 bytes
to store computation constants and an additional 68 bytes per
neuron to update state variables and other internal variables.
Table IV summarizes the computation needed for a parallel
one-step state update compared to other implementations.

The HH neuron models compared in Table IV [9], [22],
[25] are optimized for FPGAs. Since our model is not

11

yet FPGA-optimized, we have estimated FPGA-based design
computations (LUTs, FFs, DSPs) as CPU-based arithmetic
operations for relevant comparisons. [22] has implemented
HH neurons with fewer operations through piecewise linear
approximations, however, their approach comes with a large
increase in data shuffling due to extensive LUT usage. [9] has
used CORDIC to efficiently solve parameters and implement
divisions yet required many DSP blocks and seven Euler
steps per state update. Our approach aligns with that in [25],
using FPGA resources (e.g., Add/Sub, Bit shifts, AND, OR,
Absolute value, NOT, FFs) for computation. In our model,
multiplication units consume one binary multiply and one bit
shift, as we implement our model on a CPU, where converting
multiplies into logical adds and bit shifts does not provide
computational benefits. On FPGAs, binary multiplication can
be optimized to logical shifts and add operations [23], con-
verting the 50 multiplies into simple binary arithmetic.

In a network, the maximum step size of our FXP model
diminishes relative to the single-neuron FP implementation in
Table III. This reduction in step size stems from the increased
“stiffness” indroduced by the synaptic circuits, which generate
waveforms with sharp transitions and exponential derivatives.
It is worth noting that although [25] achieved a much higher
step size for neuron ensembles than our approach, much of the
improvement can likely be attributed to their implementation,
where they synchronously triggered the 150-neuron ensemble
with an external input current (without forming a true network
with inter-neuron synapses). In contrast, the other approaches
compared in Table IV, including ours, incorporate inter-neuron
synapses. Within this context, our model demonstrates a
network step size comparable to other HH approaches.

Given the variety of performance metrics in Table IV, we
define a FOM to equitably assess the efficacy of the conversion
from FP to FXP representation via three key considerations:

1) The disparate number of FP operations among base
neuron models, reflective of differing bioaccuracy.

2) Inherent tradeoffs between conversion accuracy and
computational efficiency in FXP representations, as
more accurate models are costlier.

3) The vast differences in compute requirements, such as
the necessary clock cycles, among FXP operations.

These considerations drive our FOM to normalize by the num-
ber of operations in the corresponding FP model (NFPOps),
reward for conversion accuracy (MAE), and penalize for com-
pute overhead (i.e., the total number of clock cycles required
per Euler step if operations are performed sequentially –
a quantity indicative of the energy cost). Our FOM, which
embodies conversion accuracy, compute cost, and the inherent
base FP model complexity, is given by

FOM := (MAE/NFPOps)
∑

i

(
NClk/Op,iNOps,i

)
, (31)

where NClk/Op,i and NOps,i denote the number of clock
cycles for a given type of operation and the number of that type
of operation per Euler step, respectively. In our convention, a
lower FOM corresponds to better conversion efficacy.

In a fixed-point FPGA implementation, “Simple Binary
Arithmetic Operations” (i.e., Add, Sub, Bit Shifts, Combi-

TABLE IV
COMPARISON OF COMPUTATIONAL OPERATIONS PER TIMESTEP

Metric Proposed [25] [9] [22]
Simple Bitwise Arithmetic Operations 252 267 51 13
Binary Multiplies 50 0 42 34
Divisions and Hyperbolic Functions 0 0 25 0
Number of Euler Steps per State Update 1 1 7 3
Normalized Mean Absolute Error (%) 2.4 5 - 6
Mean Pearson Correlation (%) 99.3 90.4 96 99
FOM (Lower is Better) 8.33 11.25 - 9.15
Network Simulation Yes No Yes Yes
Network Step Size (µs) 1 7800 31.25 7.8

natorial Logic/Gates, Flip Flop) take only 1 clock cycle,
whereas “Binary Multiplies” use 5 clock cycles when efficient
multiplication methods are used [48]. “Hyperbolic Functions,”
realized through CORDIC algorithms in FPGAs, take 3 clock
cycles [9]. These quantities were used in Eq.31 to calculate the
FOM for the proposed FXP FH model and the compared FXP
HH models [22], [25] as reported in Table IV. The FOM of our
model is 8.3252, which is a significant improvement over the
FOM of [25] (11.25) and [22] (9.15). Since [9] does not report
MAE, we are unable to calculate the corresponding FOM.
These results indicate that our FP to FXP model conversion
approach yields a better compromise between computational
overhead and error over previous approaches.

VII. CONCLUSION

This work presented an analytical approach for modeling
networks of biorealistic silicon neurons. By employing state
variable formulation, approximate base-2 exponentiation, and
proper scaling, our simulations in C using FXP arithmetic
compared favorably with FP analogues. Our FP model of the
FH neuron, while more expensive than the HH model, converts
to FXP more effectively and integrates better with MAC units.

Our model is suitable for FPGAs and other digital platforms,
enhancing the feasibility of employing HH-like neurons in
computational SNNs and evaluating the impact of biologically
accurate neuron dynamics on performance metrics, a process
previously hindered by the high cost of the HH model. With
the rise of analog system tools and reconfigurable platforms,
our models, which accurately describe analog circuits, enable
neuromorphic embedded system designers to seamlessly tran-
sition from digital emulators to large-scale analog systems.

REFERENCES

[1] S. Koziol, S. Brink, and J. Hasler, “A neuromorphic approach to path
planning using a reconfigurable neuron array IC,” IEEE T VLSI Syst,
vol. 22, no. 12, pp. 2724–2737, 2014.

[2] M. Davies et al., “Advancing neuromorphic computing with Loihi: A
survey of results and outlook,” P IEEE, vol. 109, no. 5, pp. 911–934,
2021.

[3] L. Timón, P. Ekelmans, N. Kraynyukova, T. Rose, L. Busse, and
T. Tchumatchenko, “How to incorporate biological insights into
network models and why it matters,” J Physio, vol. 601, no. 15, pp.
3037–3053, Sep. 2022.

[4] H. Markram et al., “Reconstruction and simulation of neocortical
microcircuitry,” Cell, vol. 163, no. 2, pp. 456–492, 2015.

[5] K. Petousakis, A. Apostolopoulou, and P. Poirazi, “The impact of
Hodgkin–Huxley models on dendritic research,” J Physio, vol. 601,
no. 15, pp. 3091–3102, Oct. 2022.

[6] E. Farquhar and P. Hasler, “A bio-physically inspired silicon neuron,”
IEEE T Cir Syst I, vol. 52, no. 3, pp. 477–488, 2005.

12

[7] C. Gordon, E. Farquhar, and P. Hasler, “A family of floating-gate
adapting synapses based upon transistor channel models,” in IEEE Int
Symp Cir Syst, vol. 1, 2004, pp. I–317.

[8] A. Basu, C. Petre, and P. Hasler, “Dynamics and bifurcations in a silicon
neuron,” IEEE T Bio Cir Syst, vol. 4, no. 5, pp. 320–328, 2010.

[9] F. Khoyratee, F. Grassia, S. Saı̈ghi, and T. Levi, “Optimized real-time
biomimetic neural network on FPGA for bio-hybridization,” Fnt
Neurosc, vol. 13, 2019.

[10] T. Levi, P. Bonifazi, P. Massobrio, and M. Chiappalone, “Editorial:
Closed-loop systems for next-generation neuroprostheses,” Front
Neurosc, vol. 12, Feb. 2018.

[11] J. Hasler and H. Marr, “Finding a roadmap to achieve large
neuromorphic hardware systems,” Fnt Neurosc, vol. 7, 2013.

[12] S. Brink et al., “A learning-enabled neuron array IC based upon transistor
channel models of biological phenomena,” IEEE T Bio Cir Syst, vol. 7,
no. 1, pp. 71–81, 2013.

[13] A. Hodgkin and A. Huxley, “A quantitative description of membrane
current and its application to conduction and excitation in nerve,” J
Physio, vol. 117, no. 4, pp. 500–544, Aug. 1952.

[14] K. Yamazaki, V. Vo-Ho, D. Bulsara, and N. Le, “Spiking neural
networks and their applications: A review,” Br Sci, vol. 12, no. 7, 2022.

[15] N. Brunel and M. van Rossum, “Quantitative investigations of electrical
nerve excitation treated as polarization,” Bio Cybernet, vol. 97, no. 5-6,
pp. 341–349, Nov. 2007.

[16] E. Izhikevich, “Simple model of spiking neurons,” IEEE T Neural Net,
vol. 14, no. 6, pp. 1569–1572, 2003.

[17] J. Luo, G. Coapes, T. Mak, T. Yamazaki, C. Tin, and P. Degenaar,
“Real-time simulation of passage-of-time encoding in cerebellum using
a scalable FPGA-based system,” IEEE T Bio Cir Syst, vol. 10, no. 3,
pp. 742–753, 2016.

[18] C. Morris and H. Lecar, “Voltage oscillations in the barnacle giant
muscle fiber,” Biophys J, vol. 35, no. 1, pp. 193–213, Jul 1981.

[19] S. Peron and F. Gabbiani, “Role of spike-frequency adaptation in shaping
neuronal response to dynamic stimuli,” Bio Cybernet, vol. 100, no. 6,
pp. 505–520, Jun 2009.

[20] E. Izhikevich, “Which model to use for cortical spiking neurons?” IEEE
T Neural Net, vol. 15, no. 5, pp. 1063–1070, 2004.

[21] S. Yaghini Bonabi, H. Asgharian, S. Safari, and M. Nili Ahmadabadi,
“FPGA implementation of a biological neural network based on the
Hodgkin-Huxley neuron model,” Fnt Neurosc, vol. 8, 2014.

[22] K. Akbarzadeh-Sherbaf, B. Abdoli, S. Safari, and A. Vahabie, “A
scalable FPGA architecture for randomly connected networks of
Hodgkin-Huxley neurons,” Fnt Neurosc, vol. 12, 2018.

[23] F. Shama, S. Haghiri, and M. Imani, “FPGA realization of Hodgkin-
Huxley neuronal model,” IEEE T Neural Syst Rehab Engr, vol. 28,
no. 5, pp. 1059–1068, 2020.

[24] X. Lin, X. Pi, X. Wang, P. Du, and H. Lu, “FPGA implementation
of piecewise linear spiking neuron and simulation of cortical neurons,”
Microproc Microsyst, vol. 91, p. 104516, 2022.

[25] S. Haghiri, A. Naderi, B. Ghanbari, and A. Ahmadi, “High speed
and low digital resources implementation of Hodgkin-Huxley neuronal
model using base-2 functions,” IEEE Trans. Circuits Syst. I, vol. 68,
no. 1, pp. 275–287, 2021.

[26] S. Nitzsche, B. Pachideh, N. Luhn, and J. Becker, “Digital hardware
implementation of optimized spiking neurons,” in Int Conf Neuromorph
Comp, 2021, pp. 126–134.

[27] C. Mead, Analog VLSI and neural systems, ser. Addison-Wesley VLSI
systems series. Reading, Mass: Addison-Wesley, 1989.

[28] J. Kim and C. Fiorillo, “Theory of optimal balance predicts and explains
the amplitude and decay time of synaptic inhibition,” Nature Comm,
vol. 8, no. 1, pp. 14 566–14 566, 2017.

[29] M. Versace, H. Ames, J. Léveillé, B. Fortenberry, and A. Gorchetch-
nikov, “Kinness: A modular framework for computational neuroscience,”
Neuroin (Totowa, N.J.), vol. 6, no. 4, pp. 291–309, 2008.

[30] A. Natarajan and J. Hasler, “Implementation of synapses with hodgkin
huxley neurons on the fpaa,” in IEEE Int Symp Cir Syst, 2019, pp. 1–5.

[31] S. Gomar and A. Ahmadi, “Digital multiplierless implementation of
biological adaptive-exponential neuron model,” IEEE T Cir Syst I,
vol. 61, no. 4, pp. 1206–1219, 2014.

[32] J. Hasler, “Starting framework for analog numerical analysis for
energy-efficient computing,” J Low Power El Appl, vol. 7, no. 3, 2017.

[33] B. Benjamin, P. Gao, E. McQuinn, S. Choudhary, A. Chandrasekaran,
J. Bussat, R. Alvarez-Icaza, J. Arthur, P. Merolla, and K. Boahen,
“Neurogrid: A mixed-analog-digital multichip system for large-scale
neural simulations,” P IEEE, vol. 102, no. 5, pp. 699–716, 2014.

[34] C. Sherwood et al., “Invariant synapse density and neuronal connectivity
scaling in primate neocortical evolution,” Cerebral Cortex (New York,
N.Y. 1991), vol. 30, no. 10, pp. 5604–5615, 2020.

[35] M. Beyeler, E. Rounds, K. Carlson, N. Dutt, and J. Krichmar, “Neural
correlates of sparse coding and dimensionality reduction,” PLoS comp.
bio., vol. 15, no. 6, pp. e1 006 908–e1 006 908, 2019.

[36] M. Herrmann, J. Hertz, and A. Prügel-Bennett, “Analysis of synfire
chains,” Network: Com Neu Syst, vol. 6, no. 3, pp. 403–414, Jan. 1995.

[37] M. Gewaltig, M. Diesmann, and A. Aertsen, “Propagation of cortical
synfire activity: survival probability in single trials and stability in the
mean,” Neural Net, vol. 14, no. 6, pp. 657–673, 2001.

[38] W. Maass, “On the computational power of winner-take-all,” Neural
Comp., vol. 12, no. 11, pp. 2519–2535, 2000.

[39] S. Shah and J. Hasler, “SoC FPAA hardware implementation of a
VMM+WTA embedded learning classifier,” IEEE J Emer Sel Topics
Cir Syst, vol. 8, no. 1, pp. 28–37, 2018.

[40] P. Ferré, F. Mamalet, and S. Thorpe, “Unsupervised feature learning
with winner-takes-all based STDP,” Fnt Comp Neurosc, vol. 12, 2018.

[41] J. Lazzaro, S. Ryckebusch, M. Mahowald, and C. Mead, Winner-Take-
All Networks of O(N) Complexity. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1989, p. 703–711.

[42] A. Ghiasi and A. Zahedi, “Field-programmable gate arrays-based
morris-lecar implementation using multiplierless digital approach and
new divider-exponential modules,” Comp El Engr, vol. 99, 2022.

[43] R. Fitzhugh, “Impulses and Physiological States in Theoretical Models
of Nerve Membrane,” Biophys J, vol. 1, no. 6, pp. 445–466, Jul. 1961.

[44] J. Nagumo, S. Arimoto, and S. Yoshizawa, “An active pulse transmission
line simulating nerve axon,” P IRE, vol. 50, no. 10, pp. 2061–70, 1962.

[45] R. Brette and W. Gerstner, “Adaptive exponential integrate-and-fire
model as an effective description of neuronal activity,” J Neurophys,
vol. 94, no. 5, pp. 3637–3642, Nov 2005.

[46] J. Hindmarsh and R. Rose, “A model of neuronal bursting using three
coupled first order differential equations,” P R Soc Lond B Biol Sci,
vol. 221, no. 1222, pp. 87–102, Mar 1984.

[47] H. Wilson, “Simplified dynamics of human and mammalian neocortical
neurons,” J Theo Bio, vol. 200, no. 4, pp. 375–388, 1999.

[48] K. Woo, P. Chong, and L. Chian, “Implementation of parallel multipli-
cations on FPGA,” in IEEE Ctrl Syst G R Coll, 2015, pp. 32–37.

Swagat Bhattacharyya Swagat Bhattacharyya is a
graduate research fellow in the School of Electri-
cal and Computer Engineering at Georgia Institute
of Technology researching bioinspired sensing and
computing. In 2022, Swagat received a BSE in
Electrical Engineering, a BS in Applied Physics, and
a BS in Mathematics from Purdue University, the
NSF Graduate Research Fellowship, and the Georgia
Institute of Technology Presidential Fellowship.

Praveen Raj Ayyappan (Graduate Student Member,
IEEE) received a B.Eng. in Electrical and Electron-
ics Engineering from the University of Nottingham
Malaysia Campus in 2022. He is now pursuing an
M.S. and Ph.D. degree in Electrical and Computer
Engineering in Georgia Institute Of Technology. His
current research interests include NVM-based effi-
cient large-scale analog computing, and designing
neuromorphic circuits and systems.

Jennifer Hasler Jennifer Hasler is a full professor in
the School of Electrical and Computer Engineering
at Georgia Institute of Technology. Dr. Hasler re-
ceived her M.S. and B.S.E. in Electrical Engineering
from Arizona State University in 1991, received
her Ph.D. from California Institute of Technology
in Computation and Neural Systems in 1997, and
received her Master of Divinity from Emory Univer-
sity in 2020. Dr. Hasler received the NSF CAREER
Award in 2001, and the ONR YIP award in 2002.
Dr. Hasler received the Paul Raphorst Best Paper

Award, IEEE Electron Devices Society, 1997, a Best paper award at SCI
2001, Best Paper at CICC 2005, Best Sensor Track paper at ISCAS 2005,
Best paper award at Ultrasound Symposium, 2006, and Best Demonstration
paper award, ISCAS 2010.

