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Abstract—Analog-digital converters (ADCs) are critical for
processing signals in wireless sensor nodes (WSNs). Yet, the large
data rate of uniformly-sampled ADCs during the acquisition of
non-stationary signals often cuts deeply into the WSN power
budget. To address this issue, we propose an “extrema pulse gen-
erator” to trigger ADCs at extrema, reducing the number of data
points acquired and transmitted. Circuits are constructed and
experimentally evaluated on an in-house SoC field-programmable
analog array in a 350 nm CMOS process. The extrema pulse
generator, which draws 4.3-12.3 µW (depending on the input
bandwidth), can efficiently sample both synthetic and natural
signals, and the signals can be reconstructed with low error.

I. THE NEED FOR INTELLIGENT SAMPLING

Wireless sensor nodes (WSNs) encode physical phenomena
into symbols for transmission to a basestation. Designers of
WSNs [e.g., Fig. 1] must balance power draw, data quality,
and system reconfigurability, which depend on both the input
signal and the processing pipeline. Biomedical scenarios, such
as implantables and wearables, impose strict resource con-
straints on WSNs, including power draw and volume [1]–[6].
For example, intracortical neural recorder arrays are limited to
10mW to avoid brain tissue damage [7]. In a typical neural
recorder power budget, low-noise amplifiers (LNAs) in the
analog front end account for 20-30% of the power draw, while
analog-digital converters (ADCs) and wireless transmission
together account for 40-50% of the power draw [7, 8].

While modern ADCs already perform better than
1 µW/Mbps [9], simply interfacing with a standard digital
output pad with a nominal capacitance of 100 pF (at
VDD=1V) necessitates 50 µW/Mbps. The power draw of
ADCs and wireless transmission varies from 100 µW/Mbps
for backscatter communication to 10mW/Mbps for short-
range FSK transmission [7, 8]. Commercial standards like
BLE 5 require approximately 50mW/Mbps at 8 dBm
transmission power [10]. Since biological signals, of which
electrocardiograms (ECGs) [Fig. 2] are a representative
example, are typically nonstationary, nonuniform sampling
presents an opportunity to greatly diminish the number
transmitted data points at the source. In this way, despite
physical constraints on data transmission costs and LNA
power draw (limited by gain and noise requirements) [7],
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Fig. 1. Signal flow of a potential extrema-triggered WSN. This work proposes
the extrema pulse generator (a general-purpose, low-power analog event
detector) and demonstrates reconstruction from sampled extrema points.

nonuniform sampling can mitigate power draw due to
nonstationary signal compression and transmission.

This work proposes an “extrema pulse generator,” which can
trigger a standard ADC (such as an asynchronous successive
approximation register) at extrema and a timer to acquire
corresponding timestamps [Fig. 1]. Extrema sampling is a
widely applicable nonuniform sampling approach, yet it needs
the development of more robust hardware and software than
are currently available to be used in practice. Compared to pre-
vious work [11, 12], which demonstrated low-power extrema
detection circuits and reconstruction from extrema points, our
work presents several improvements and contributions:

1) Detailed signal-theoretic rationale for extrema sampling.
2) A novel “extrema pulse generator” that can be readily

reconfigured for scenarios with different operating fre-
quencies, power budgets, and signal-noise ratios (SNRs).

3) A robust reconstruction algorithm that makes more re-
laxed assumptions about the interpolation function.

4) Experimental demonstration of the Pareto optimality of
extrema sampling over uniform sampling.

The extrema pulse generator is constructed and demon-
strated using an in-house SoC field-programmable analog
array (FPAA) in a 350 nm CMOS process [13]. This work
is organized as follows: Section II enumerates rationales for
extrema sampling, Section III describes extrema pulse gener-
ator subcircuits, Section IV elucidates reconstruction, Section
V demonstrates and compares system performance to other
sampling approaches and also provides concluding remarks.

II. THE CASE FOR EXTREMA SAMPLING

Nonuniform sampling approaches, like the human sensory
system, are energy-efficient because they only respond to novel
sensory events [17]. These events may include significant
changes in input value, as in level-crossing ADCs, or complex
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Fig. 2. ECG (a) waveform and (b) wideband spectrogram. Sampling rates
≥250Hz and resolutions ≥8 bit are needed to accurately record the sharp
features of “QRS complexes” (labeled), which typically last ≤20% of the
inter-heartbeat period [14, 15]. (c) Pareto fronts [16] for uniform and ideal
nonuniform ECG sampling. The nonuniform approach samples time-domain
points to minimize polynomial reconstruction error; for PCHIP interpolation,
we observe special points, including extrema, enabling the nonuniform ap-
proach to reconstruct ECGs more optimally than uniform sampling.

signal features detected through methods like spectral template
matching [18], as in application-specific event detectors. The
former approach benefits from low component count and
high sensitivity (although with low specificity). In contrast,
the latter approach achieves higher specificity at the cost
of lower sensitivity and a greater number of components.
We propose extrema sampling as a general-purpose, middle-
ground solution that reduces energy consumption with low
component count and low reconstruction error.

Most nonuniform sampling approaches [18]–[24] leverage
extra assumptions about signal features (besides the spectral
support range) to sample more intelligently. In contrast, ex-
trema sampling relaxes these assumptions, providing a widely-
applicable framework that samples at twice the mean fre-
quency of the input signal, which is often much lower than
the global Nyquist rate for nonstationary signals, even after
paying a two-fold penalty for also acquiring sample times-
tamps. Extrema sampling also does not require costly signal
reconstruction algorithms and is well-justified [19] because:

1) The quantities of interest for a signal often happen to be
extrema values and the time between extrema; in such
cases, interpolation may not be necessary [25].

2) Extrema, denoting zero crossings of the signal derivative,
carry more information than uniformly-sampled points.

3) Extrema occur in excess of half the Nyquist rate for a band-
limited signal. Alongside rationale (2), there is sufficient
information to perfectly reconstruct a bandlimited extrema-
sampled signal via Lagrange interpolation variants [19].

Additionally, we propose that extrema sampling naturally
arises if time-domain points are selected in an unbiased
manner to minimize polynomial reconstruction error under a
mean sampling rate constraint (Fstar). We demonstrate this

by formulating and solving the following constrained nonlinear
integer programming problem with a genetic algorithm:

argmin
Φ

NRMSE s.t.


1

n

∑
i

Φi ≤ Fstar

∀Φi ∈ {0, 1}
(1)

where NRMSE := ∥F (X,Φ)−X∥2/∥X− ⟨X⟩∥2 measures
the error between the raw ECG data vector (X) and data
reconstructed using a piecewise cubic Hermite interpolating
polynomial (PCHIP) function (F) with a binary vector (Φ) of
length n that decides which of the n elements of X to sample.
As shown in Fig. 2(c), idealized nonuniform sampling tends
to prioritize significant extrema, achieving a better tradeoff
between NRMSE and the effective sampling rate Fseff com-
pared to uniform sampling, despite the additional overhead
required to record timestamps in the nonuniform case.

III. EXTREMA PULSE GENERATOR

The extrema pulse generator shown in Fig. 3(a) is a low-
power circuit comprising two subcircuits: the extrema detector
and the edge detector. The extrema detector changes its state
at input extrema, and the edge detector produces an active-
low pulse when the output of the extrema detector changes
state. To understand overall operation, it is important to first
understand the behavior of the hysteretic differentiator (HD).

A. Hysteretic Differentiator

Differentiation is necessary to detect extrema; however, con-
ventional linear differentiators have poor noise immunity [17].
Differentiators are fundamentally circuits which are insensitive
to the true signal value while being sensitive to the local
derivative. The HD [Fig. 3(b)] is a nonlinear circuit [17] that
fulfills fundamental differentiator functions while still being
noise-resistant. Our extrema detector relies on the HD.

The HD is a voltage follower comprising a highly-nonlinear
buffer stage and an operational transconductance amplifier
(OTA) GHD driving the buffer stage; the output of GHD is
the HD output (Vhd). For small HD input (Vc) amplitudes,
Vhd closely follows Vc due to the buffer stage operating
in a locally linear region. However, for large Vc, Vhd is
sensitive to sgn(∂Vc/∂t), changing steeply at extrema due
to the corresponding change in the dominant FET; the nFET
dominates when Vc increases, and the pFET dominates when
Vc decreases. It is worth noting that floating-gate (FG) pFETs
are used for implementing all subcircuit bias currents (such as
in GHD) and switches for routing nets within the SoC FPAA.

B. Extrema Detector

The extrema detector generates a digital output (Vcomp)
that changes state at significant extrema of Vin. The primary
function of the HD is also to detect extrema, but the output
of a single HD is not digital and may be slow if the extrema
are not sharp enough. To create a fast, digital-output extrema
detector, two HDs (HD1 and HD2) are cascaded, as shown in
Fig. 3(a), and the output of HD2 is compared to HD1. HD1
sharpens the extrema of the input Vin so that HD2 can respond
faster. This approach requires a larger current bias for the OTA
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Fig. 3. (a) Extrema pulse generator diagram. (b) HD schematic. (c) Experimental measurements of Vlpf and Vhd,2 responding to 500Hz sinusoidal inputs
of varying amplitudes (increasing left to right). Schmitt trigger (d) schematic and (e) experimentally measured hysteresis curve. (f) Experimentally measured
extrema detector response to sinusoids of varying frequencies (increasing left to right). Note that the capacitors in gray are induced through parasitics.

in HD1 to mitigate latency but permits a smaller bias for the
OTA in HD2, which incurs a smaller latency penalty.

The other extrema detector subcircuits (the noise filter,
scaler, integrator, and Schmitt trigger) compensate for the
nonidealities of our approach. The noise filter is a lowpass
GmC filter that is adjusted to mitigate HD1 output noise
beyond frequencies of interest, which would otherwise be
amplified by HD2. The scaler adjusts the input offset (via
VTRIM,1) and amplitude (via RH and RL) of HD2 so that:
(1) the output offset of HD1 exceeds the output offset of HD2
by the peak-peak output noise level of HD2, thereby reducing
spurious comparisons, and (2) the peak-peak voltage into HD2
does not cause Vhd,2 to saturate for typical peak-peak values
of Vin. Figure 3(c) shows Vlpf and Vhd,2 for sinusoids of
increasing amplitudes to further elucidate circuit operation.

The integrator and Schmitt trigger compose a noise-immune
comparator. The integration rate is tuned such that the com-
parator state transition time is far less than typical signal
periods of Vin but greater than undesired noise periods. The
Schmitt trigger [Fig. 3(d)] is created by cascading an inverter
using an FG pFET with two control gates and a standard
current-starved inverter (as suggested in [26]). The Schmitt
trigger input (Vint) feeds into one control gate (denoted by
CIN ), and the positive feedback loop of the Schmitt trigger is
formed by connecting the output voltage (Vcomp) to another
control gate (denoted by CFB). Since we design complemen-
tary FETs to satisfy µp(W/L)p ≈ µn(W/L)n and with match-
ing threshold voltages, the charge stored in the FG (QFG)
controls the low-high output transition threshold (VT,H ), while
capacitance CFB controls the difference between the high-low
(VT,L) and low-high (VT,H ) transition thresholds as shown by
the following compact approximations:

VT,H ≈ CT · VDD
CT + CIN

− QFG

CT + CIN
(2)

VT,H − VT,L ≈ (CFB · VDD) / (CT + CIN ) (3)

where CT = CIN +CFB . The Schmitt trigger is tuned so that
its hysteresis curve is symmetric about the center of its input
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Fig. 4. Edge detector (a) schematic and (b) experimentally measured signals.

range [Fig. 3(e)]. The output of the biased extrema detector,
plotted for input sinusoids of different frequencies in Fig. 3(f),
has a one latency component that is input-insensitive (from the
integrator and Schmitt trigger) and another that increases with
increasing input signal period (from the HDs).
C. Edge Detector

The edge detector [Fig. 4(a)] outputs an active-low pulse
on each rising or falling edge of its digital input (Vcomp) [Fig.
4(b)]. The edge detector uses an OTA integrator and a current-
starved inverter to generate a delayed and inverted copy of its
input. The edge detector then performs an “exclusive OR” of
the delayed input (Vd) with Vcomp to produce output Vevent.

Integration capacitance (CP,3) is produced with interconnect
parasitics. The integrator bias (GTIM ) is tuned to set a
clock pulse width, and the integrator reference, VTRIM , is
then adjusted to trim the mismatch between the positive and
negative slew rates of the OTA, resulting in matching clock
pulse widths for maxima and minima (20 µs in this work).

IV. RECONSTRUCTION ALGORITHM

In this work, extrema (i.e., voltages and corresponding
timestamps) are sampled with an 8-bit oscilloscope on the
falling edge of Vevent. Signal reconstruction from these ex-
trema points involves two steps: sample extrapolation and
polynomial interpolation. The extrapolation algorithm first
uses the neighboring samples to determine if a sampled point
is likely to be a local extremum based on non-monotonicity. If
the sampled point is likely to be a true local extremum, the ex-
trapolation algorithm corrects the sampled voltage timestamps
for the estimated latency of the extrema pulse generator by
assuming the input signal is locally sinusoidal. Recall that the
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Fig. 5. Experimental results of extrema pulse generator sampling and reconstruction for (a) a quadratic chip and (b) an ECG. The ECG is filtered with a 60Hz
notch before input into the extrema pulse generator. Comparison between uniform sampling and extrema sampling performance for (c) the quadratic chirp and
(d) the ECG. Inner points corresponding to the uniform samples form a Pareto front for the uniform approach; extrema sampling is a Pareto improvement.

extrema pulse generator has a latency component that is input-
insensitive and a component that increases roughly linearly
with the input period; latency for the ambient operating
temperature can be characterized using sinusoidal inputs and
used to construct a linear model. For each extremum in the
sampled data: (1) the timestamps of the previous and next
sampled points are used to estimate the local sinusoid period,
(2) the delay between the true extrema and the generated
clock pulse is estimated from the linear model and subtracted
from the measured timestamp, and (3) the true voltage at the
extrema is estimated from a parabolic approximation derived
from the series expansion of the local sinusoid.

Extrapolated sample points are reconstructed using a poly-
nomial interpolation algorithm to recover the original signal.
Lagrange interpolation variants are ideal [19, 27], but can be
erratic in the presence of nonidealities (e.g., misalignment
of extrapolated extrema, occasional false positives/negatives,
etc.), making them difficult to use in practice. PCHIPs [28]
are used in this work since they are well-behaved in the
presence of timing nonidealities and false positives while
preserving extrema locations and having minimal overshoot.
Bézier curves with concavity restrictions, as used in [11, 12],
only reconstruct well for a limited class of signals.

V. RESULTS, DISCUSSION, AND CONCLUDING REMARKS

The extrema pulse generator circuits are validated on a SoC
FPAA [13] fabricated in a 350 nm CMOS process, with the
scaler circuit external to the FPAA [Fig. 3(a)]. Input voltages
are supplied from a function generator in this demonstration
system, and extrema are sampled with an oscilloscope on
the falling edge of Vevent. The circuit is optimized and
demonstrated separately for two test signals: a quadratic chirp
and an ECG. Extrema pulse generator components internal
to the FPAA draw 4.3 µW for the ECG and 12.3 µW for
the quadratic chirp. Since the power draw of the extrema
pulse generator is predominated by the aggregate dissipation of
multiple GmC circuits, power draw scales with the input band-
width requirements, approximately at a rate of 100 nW/Hz.

The quadratic chirp and ECG achieve visually-pleasing
reconstructions after sampling [Fig. 5(a-b)], corresponding to
NRMSEs of 0.044 and 0.261, respectively. Figures 5(c-d) com-
pare the tradeoff between reconstruction accuracy (NRMSE,
which is defined in Section II) and effective sampling rate
(Fseff ) between the proposed approach and uniform sampling

TABLE I
COMPARISON OF NONUNIFORM SAMPLING APPROACHES

Proposed [11, 12] [18] [23] [29]

Application Extrema Extrema Acoustic Level-Cross. Async.
Det. Det. Vehicle Det. ADC ∆-Mod.

Platform FPAA FPAA FPAA ASIC ASIC
Process (nm) 350 350 350 130 180
Bandwidth (Hz) 60, 1000 60 1000 4000 250
Power (µW) 4.3, 12.3 4.95 43 6.5 109

for the quadratic chirp and ECG. In Fig. 5(c), the proposed
approach samples at just twice the average signal frequency
(Favg), which is below half the global Nyquist rate of the
quadratic chirp, while achieving low reconstruction error. In
fact, the uniform approach must sample five times faster to
achieve the same reconstruction accuracy, and for the same
effective sampling rate (Fseff ), the uniform approach has 18
times higher NRMSE. Similarly, for the ECG [Fig. 5(d)], the
uniform approach must sample three times faster to achieve
the same NRMSE as extrema sampling, and for the same
Fseff , the uniform approach has four times higher NRMSE.
Even if the overhead of acquiring timestamps is considered,
and Fseff is penalized accordingly, extrema sampling remains
a Pareto improvement (i.e., improvement in both objectives:
NRMSE and Fseff ) over uniform sampling for both the
quadratic chirp and the ECG. However, nonidealities like false
positives prevent the extrema pulse generator performance
from reaching the ideal Pareto front in Fig. 2(c).

Table I compares the performance of the extrema pulse
generator with other nonuniform sampling approaches in both
FPAAs and ASICs that operate in the audio range and utilize a
similar technology node. For a given bandwidth, our general-
purpose extrema sampling approach draws less power than
other FPAA nonuniform sampling approaches [11, 12, 18].
ASICs [23] can usually achieve better performance, and our
performance would also improve in a custom implementation.

Although we found PCHIP reconstruction to perform well,
our PCHIPs do not explicitly utilize information on whether
the sampled point is a maximum or a minimum. In future
work, we seek to improve sample information incorporation
during interpolation and to redesign the extrema pulse genera-
tor for lower power draw and less dependency between noise
immunity and clock delay. Overall, the experimental results
demonstrate the potential of extrema sampling as a general-
purpose data reduction paradigm in ADCs.
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