
1

A Six-Transistor Integrate-and-Fire Neuron
Enabling Chaotic Dynamics

Swagat Bhattacharyya, Member, IEEE and Jennifer O. Hasler*, Senior Member, IEEE

Abstract—Integrate-and-fire (I&F) neurons used in neuromor-
phic systems are traditionally optimized for low energy-per-
spike and high density, often excluding the complex dynamics of
biological neurons. Limited dynamics cause missed opportunities
in applications such as modeling time-varying physical systems,
where using a small number of neurons with rich nonlinearities
can enhance network performance, even when rich neurons incur
a marginally higher cost. By adding additional coupling into the
gate of one transistor within an I&F neuron, we parsimoniously
achieve a highly nonlinear system capable of exhibiting rich
dynamics and chaos. The dynamics of this novel neuron include
regular spiking, fast spiking, and chaotic chattering, and can be
tuned via the neuron parameters and input current. We imple-
ment and experimentally demonstrate the behavior of our chaotic
neuron and its subcircuits on a 350 nm field-programmable
analog array. Experimental insights inform a compact simulation
model, which validates experimental results and confirms that
the additional coupling incites chaos. Results are corroborated
with comparisons to traditional I&F neurons. Our chaotic circuit
achieves the lowest area (0.0025 mm2), power draw (1.1-2.6 µW),
and transistor count (6T) of any nondriven chaotic system in
integrated CMOS thus far. We also demonstrate the utility of
our neuron for neuroscience exploration and hardware security.

Index Terms—Integrate-and-Fire Neuron, Floating-Gate, Non-
linear Systems, Chaotic Oscillator, Chattering, Synchronization

I. INTRODUCTION OF DYNAMICALLY-RICH NEURONS

THE proliferation of mixed-signal neuromorphic comput-
ing systems [1]–[3] underscores a growing interest in

leveraging the inherent energy efficiency and real-time output
capabilities of analog computation. Contemporary intuition
has led to a focus on improving neuron energy-per-spike [4],
[5] while maintaining density. Thus, current system designers
often opt for integrate-and-fire (I&F) neuron variants as their
fundamental compute elements, in effect ignoring important
neuron dynamics. Typical I&F neurons lead to missed opportu-
nities in network classification performance due to lacking the
complex dynamics observed in their biorealistic counterparts
[6]. A properly selected mixture of complex nonlinear neurons
can greatly reduce network size while improving modelling
of time-varying physical systems [7]. These recent works [6],
[7] indicate a shifting paradigm where one can improve both
network accuracy and performance-per-Watt by using fewer,
yet costlier neurons with biorealistic dynamics.
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Fig. 1. Integrate-and-fire (I&F) neurons are widely employed in neuromorphic
systems but generally lack complex dynamics. This work demonstrates and
studies a method to instill rich dynamics, including chaotic chattering, into
I&F-style neurons by altering the coupling into the gate of one transistor. This
modification facilitates the parsimonious implementation of a highly nonlinear
dynamical system, expanding the capabilities of I&F-style neurons.

The benefits of efficiently modeling biological nonlinearities
extends beyond traditional classification tasks and will be
crucial for gleaning insight into several neurological diseases,
such as Parkinson’s disease, Alzheimer’s disease, and epilepsy.
The complex nonlinear dynamics, including chaotic behaviors
[8], exhibited by individual neurons and neural populations
are thought to be important for associative memory [9] and
population synchronization [10]. From an engineering perspec-
tive, chaotic neurons can provide valuable contributions as true
random number generators for hardware security [11] and as
units in frameworks like reservoir computing [12].

While incorporating dynamical richness into hardware neu-
rons is advantageous, it often results in prohibitively costly
implementations that demand large transistor counts or in-
tricate tuning procedures. Moreover, only a few continuous-
time chaotic systems have been successfully demonstrated in
integrated CMOS, highlighting challenges in the scalable de-
ployment of chaotic neurons. Hence, there is a great need for a
hardware neuron model that captures the dynamical richness of
biological neurons while addressing practical considerations:
ease of tuning, scalability with system size and across technol-
ogy nodes, back-compatibility with nonchaotic applications,
and accessibility to neuromorphic system designers.

In response, this work proposes and experimentally demon-
strates a novel six-transistor I&F neuron that enables the
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scalable deployment of chaotic neuromorphic systems in inte-
grated CMOS. Our approach involves a seemingly innocuous
yet impactful modification to the Mead axon hillock structure
[13] widely-adopted by designers; specifically we add a capac-
itor to alter the gate coupling of one pFET in the architecture
(Fig. 1). This modification effectively transforms the pFET
into a multi-input translinear element (MITE), a floating-gate
(FG) pFET with two control gates, which introduces an addi-
tional degree of freedom through a programmable gate charge.
Programmability is crucial for the scalability of inherently
parameter-sensitive chaotic systems, ensuring robust operation
even in the presence of device mismatch. Using a 350 nm
field-programmable analog array (FPAA) developed at Georgia
Institute of Technology [14], we experimentally show that
our architecture exhibits a diverse range of spiking dynamics,
including regular spiking, fast spiking, and chaotic chattering,
broadening the scope of I&F neurons. We also provide the-
oretical analyses to elucidate underlying mechanisms driving
chaos. Our contributions are significant and multifaceted:

• Proposal of a novel neuronal oscillator: By introducing
a single component into the classic I&F neuron, our
elegant design achieves the behavioral richness typically
associated with far more complex neurons using the
fewest transistors, smallest area, and lowest power draw
of any non-driven CMOS chaotic circuit to date.

• Comprehensive experimental characterization in inte-
grated CMOS: Through more detailed experimental char-
acterization of a FG Schmitt trigger we previously pro-
posed [15] and comparative experimental measurements
of traditional and chaotic I&F neurons on the same FPAA
substrate, we pinpoint the cause of chaos. The integration
of FG technology and use of an FPAA within our design
provides the necessary programmability to mitigate mis-
match [16], ensuring reliable operation and scaling [17]
of inherently parameter-sensitive chaotic systems.

• Derivation and comparative analysis of a compact neuron
simulation model: We develop and fit parameters to a
compact simulation model made publicly available at
github.com/SwagatBhattacharyya/6T Chaotic Neuron to
facilitate further research into and adoption of our model.

• Demonstration of network applications and consideration
for ASIC implementations: We show the integration of
our neuron into networks for studying synchronization
behaviors inspired by biological systems and for enabling
secure hardware communication. We also conceptualize
and discuss design considerations for an application-
specific integrated circuit (ASIC) implementation.

The rest of this work is organized as follows. Section II
examines the current landscape of hardware neurons and
implementations of dynamical systems. Section III elucidates
circuit architecture and empirically characterizes the chaotic
neuron. Section IV presents a compact simulation model and
analyzes the factors for chaos. Section V applies our neuron
in a network to study synchronization phenomena and demon-
strate secure communication. Section VI compares our model
to other chaotic systems and discusses further implementation
considerations. Section VII offers concluding remarks.

II. CHAOTIC DYNAMICAL SYSTEMS

While forced chaotic systems need at least two dynam-
ical variables, autonomous chaotic systems require at least
three dynamical variables. Chaotic circuit research spans four
decades, driven largely by applications in secure communica-
tions, where coupled chaotic circuits mask and recover signal
spectra, and applications needing random number generation.
While a diversity of chaotic systems have been theoretically
shown, with attractor shapes including spirals, trumpets, stars,
and spikes [18], several challenges have limited the number
and types of continuous-time autonomous chaotic systems
implemented on CMOS integrated circuits (ICs).

A. Circuit Implementations of Chaotic Oscillators

While a systematic framework for designing novel chaotic
systems is not yet available, chaotic dynamics have been
serendipitously observed in several commonplace circuits,
including DC-DC converters [19] and Colpitts oscillators [18].
Among contrived chaotic circuits, Chua’s circuit is notably
prevalent due to its simple state equations, which do not
require multiplications. While Chua’s circuit is most frequently
constructed using discrete components, there have been a
few CMOS IC implementations; one adaptation focused on
implementing the nonlinear diode [20], while another approach
realized the full circuit on an IC by implementing the state
equations with integrators, bypassing the need for inductors
or gyrators [21]. Unfortunately, circuits with inductive effects
are cumbersome to implement on CMOS ICs due to needing
a large area for physical inductors or an extensive number of
matched transistors for gyrator and state variable emulations.

Other notable implementations of chaotic circuits include
third-order jerk circuits employing exponential nonlinearities
with diodes [22] and Lorenz systems implemented with a
translinear network of MITEs [23]. There has also been recent
interest in analog implementations of fractional-order chaotic
systems realized using an ample number of filter blocks and
multipliers on commercially available FPAAs [24], [25]. When
complexity is not a limiting factor, dynamical systems can
be embodied using modern general-purpose analog comput-
ers, which incorporate integrators, summers, multipliers, and
nonlinear elements as demonstrated in [26].

Since the observation of chaos in biological neurons under
forced sinusoidal stimuli, there has been considerable interest
in developing chaotic neuron models [8]. Most such models
are software constructs modified from the classic I&F model.
Notably, the quadratic I&F model generalizes the bifurcation
properties of conductance-based neuron models near the firing
threshold and can be adapted for chaotic dynamics. To this
end, [27] introduces an adaptive quadratic I&F neuron ex-
hibiting chaotic behavior. Similarly, [28] introduces a chaotic
spiking neuron employing a logistic function, with a model
form similar to a modified quadratic I&F neuron.

However, only a few chaotic spiking neuron models have
been realized in hardware. Until recently, designs aimed either
to approximate [29] or to accurately reproduce [30] Ai-
hara’s model [8]. Notably, [30] implemented an asynchronous
chaotic spiking neuron in 0.5 µm CMOS, achieving a faithful
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Fig. 2. Schematics of the (a) chaotic neuron driven by an FG synapse and (b) FG Schmitt trigger with parasitic capacitors in gray and nodes in blue. FG
Schmitt trigger nodal dynamics elucidated via experimental (c) hysteresis curves with Vmem under sinusoidal forcing at varying frequencies and (d) transient
responses to 50Hz Vmem square forcing at varying peak-to-peak amplitudes. In (c-d), we program the MITE so Ist =100nA when control gates are grounded.
Ist is 100nA, 1 µA, and 10nA for Tuning 1, 2, and 3, respectively; we adopt Tuning 1 for the rest of this work. Forced dynamics of the Schmitt trigger,
including chaos during high-frequency forcing, are pivotal to neuron behavior, where the interaction of Iin and reset mechanism (M1 and M2) regulate Vmem.

recreation of Aihara’s equations in mixed-signal hardware.
The design in [30] incorporated smooth nonlinearities, sharp
input/output pulses, and time delays, requiring a few hundred
transistors and potentially complicating the identification of
circuit nonidealities. [29] implemented its model in 2 µm
CMOS using a N-shaped piecewise linear approximation for
the nonlinearity in Aihara’s model. [29] utilized about 70 FETs
and a dozen resistors, using half of the available die area. Both
[29] and [30] are asynchronous, sampled systems, and can not
be definitively classified as non-driven (autonomous). A new
type of analog chaotic neuron has been recently proposed [31].
By modifying the two-variable spiking neuron (TSN) in [32],
[31] presents a 180 nm CMOS neuron exhibiting a period-
doubling route to chaos and behaving like an Izhikevich neu-
ron despite differences in the membrane potential nonlinearity
and the coupling between the membrane potential and recovery
variable. Nevertheless, [31] uses at least 17 FETs, with several
FETs in current mirrors requiring good matching.

B. Toward Parsimonious Chaotic Neurons

Compact mathematical models of neurons rarely translate to
compact circuit implementations, and vice versa. We adopt a
continuous-time, circuit-driven approach as advocated in [33].
Key insights into parsimonious chaotic neural oscillator design
can be gleaned from [34], which utilizes a ring oscillator-
like structure with a sgn nonlinearity coupling two adjacent
stages. A ring oscillator is similar to a Mead axon hillock that
is driven by a constant-current synapse FET, provided there
is no feedback capacitor. Another key insight comes from
[23], which shows that MITE FG networks can efficiently
realize chaotic dynamical systems with nonlinear operations
such as division and multiplication. These insights inform the
development of our proposed neuron model, which substitutes
a MITE FG for a pFET in the first inverter of an axon hillock,

reducing feedback capacitance and introducing nonlinear cou-
pling between Vmem, Vinv , and Vspike.

Inclusion of FGs also offers reconfigurability, precision [16],
and temperature compensation capabilities [35], which are cru-
cial for robustly implementing inherently parameter-sensitive
chaotic systems on modern technology nodes, which have
significant process variation and poor control of parasitics.
FGs have scaled well to a 40 nm node [17], facilitating the
development of cross-technology node standard cell libraries
with a high degree of behavioral consistency [36]. By adhering
to a few basic design principles, such as employing thick-
oxide FETs without gate contacts, FG biases can remain
accurate for over 10 years [37]. We deliberately implement our
circuits on an FG-enabled, in-house 350 nm SoC FPAA [14]
while acknowledging that this may cause minor increases in
parasitics compared to an ASIC. In return, the FPAA enables
us to use the same FETs for all tests and leverage proven
infrastructure to program FGs to 13-bit precision [16] across
98 computational analog blocks (CABs), both of which are
necessary for a legitimate comparative analysis of neuron
models and biasing conditions.

III. EXPERIMENTAL CHARACTERIZATION OF THE
PROPOSED CIRCUIT ARCHITECTURE

Our neuron is a FG Schmitt trigger circuit with a reset
mechanism coupled to its input (Fig. 2(a-b)). The neuron
current input Iin is generated by applying a voltage Vin to
the source of an FG synapse FET external to the neuron. The
control gates of the input synapse and M6 are connected to a
static reference; we do not explicitly depict this extraneous
voltage for clarity, as it is taken into account during FG
programming to the target runtime drain current. Also note that
while the reset mechanism employs a cascode structure, the
reset bias in this design Vrst is (unconventionally) applied to
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the top transistor of the cascode to mitigate the adverse effects
of charge injection, which is prominent due to rapid switching
induced by the spiking voltage, Vspike. Since the interaction
between Iin and the reset mechanism (M1 and M2) forces the
voltage on Vmem, it is imperative to understand the operation
and forced dynamics of the Schmitt trigger, since a majority of
the behavioral richness of the neuron is encapsulated within.

A. FG-Enabled Schmitt Trigger

The FG Schmitt trigger (Fig. 2(b)) was initially proposed
by [38] and first experimentally shown in [15]. Our version,
which is adapted from [15], uses a MITE-based current-starved
inverter cascaded with a common-source amplifier. The input
of the MITE-based inverter (Vmem) is tied to nFET M3 and to
one control gate of the MITE (Cin). The other control gate of
the MITE (Cfb) connects to the output of the Schmitt trigger
(Vspike), thereby establishing a positive feedback mechanism.
The gate voltage on the MITE pFET (Vfg), is a weighted
sum of the control gate voltages plus a programmable offset.
Thus, the integrated positive feedback mechanism makes the
switching threshold of the first inverter dependent of the
voltage at Vspike, decreasing the threshold when Vspike is high
and increasing the threshold when Vspike is low.

[15] elucidated two low-frequency properties of the FG
Schmitt trigger: the center of the hysteresis window can be
adjusted via changing the charge trapped on the FG, and the
width of the hysteresis window depends on the capacitive
coupling strength from each of the two control gates of the
MITE into the channel of M4. However, our approach diverges
from previous works in that we: (1) replace the second inverter
in the inverter cascade with a common-source amplifier, (2)
bias the MITE to operate entirely in subthreshold, and (3)
operate the Schmitt trigger far above the frequency where the
results from previous works are valid. Thus, we characterize
the Schmitt trigger across FG biases and input frequencies to
enable a deeper understanding of circuit behavior.

To this end, we first examine the response of the Schmitt
trigger dynamical variables to sinusoidal forcing of the input
voltage Vmem at different frequencies for three tunings (Fig.
2(c)). The settings are as follows: ‘Tuning 1’: Ist=100 nA,
‘Tuning 2’: Ist=1 µA, and ‘Tuning 3’: Ist=10 nA. In all
tunings, the MITE is programmed to source ∼100 nA when
both of the weakly-coupled control gates are grounded. The
net effect of lowering Ist is that the operating frequency range
of the Schmitt trigger becomes wider; otherwise, the behavior
across all tunings is consistent. Compared to the low-frequency
hysteresis loops, as the frequency is increased modestly, the
lower threshold (Vth,L) significantly decreases, and the higher
threshold (Vth,H ) increases slightly, expanding hysteresis loop
width. This expansion is due to the current-starving effect of
the MITE, which results in a sluggish low-high transition in
Vinv . At higher frequencies, this sluggish transition can align
with the rising input edge, causing an apparent increase in
Vth,L and an inversion of the slope at the lower edge of the
hysteresis loop. At these high input frequencies, we clearly
observe forced chaotic behavior. When the input frequency is
increased further, all Schmitt trigger nodes saturate.
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Fig. 3. Experimental Vmem transient response of the chaotic neuron given
20Hz input current steps from zero to various Iin,max levels. The neuron
shows consistent dynamics across Vτr ; however, the Iin,max for triggering
different behaviors, such as initial firing, slow spiking, fast spiking, chattering,
and stopping, varies with Vτr . Additionally, under high input currents, Vmem

latches low at Vτr ∈ {2.5V, 1.5V} and latches high at Vτr = 0.5V.

Fig. 2(d) shows transient responses of the FG Schmitt
trigger voltage nodes to 50Hz step inputs with varying peak-
peak amplitudes, under the same tuning conditions used for the
sinusoidal input. At low input amplitudes, the step response of
Vinv is lowpass, and Vspike is saturated. At higher amplitudes,
a low-high transition of Vinv occurs, and larger amplitudes
lead to smaller low-high transition delay. Lowering Ist causes
the low-high transition of Vinv to be faster and of Vspike to
be slower. We use ‘Tuning 1’ henceforth due to its wide
operating frequency and balance between low- and high-
frequency responses, which enables diverse transient behavior.

B. Dynamics Over Spiking Range

We are now poised to explore the dynamics of the full
neuron as a function of the reset bias (Vτr) and input current
(Iin). The initial step involves assessing the transient behavior
of the membrane potential Vmem when subjected to 20Hz
input steps starting from zero current and stepping to various
maximum input current levels (Iin,max) (Fig. 3). Since the
level forced on Vspike when Vmem is below the Schmitt trigger
threshold voltage causes substantial Vmem-dependent leakage
through the reset mechanism, a minimum Iin is required to
initiate continuous firing. Thus, when Iin,max is far below the
firing threshold, Vmem only modestly increases in response
to the input step, albeit with considerable delay, equilibriating
when Vmem causes leakage to balance Iin. As Iin,max reaches
several times the threshold current, the integration rate on
Vmem increases, sharpening spikes (since rising edges are
accelerated) and increasing the spike rate. Increasing spike
rates shrink the Schmitt trigger hysteresis window, which
diminishes the peak-peak amplitude of Vmem. As Iin,max is
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Fig. 4. Chaotic neuron experimental measurements. (a) Vmem amplitude versus Iin, (b) annotated IF curve, (c) exemplary attractors in the high input
current regime for Vτr =2.5V, and (d) nodal voltage waveforms at the exemplary spots annotated on the IF curve. Vτr alters the threshold current and the
point along the IF curve where the response becomes nonlinear, enabling the adjustment of the mean chattering frequency and max frequency through Vτr .

increased further, elevated reset mechanism switching forces
the Schmitt trigger into its chaotic regime, where spiking
is aperiodic and the spike rate no longer increases consis-
tently with increasing Iin. When the spike rate drops in the
chaotic regime, the spike period percent variation becomes
comparatively large, causing chattering.‘Chattering’ refers to
a diversity of rhythmic burst-firing patterns involving brief
spike clusters punctuated by short resting periods. Beyond

some Iin,max, continuous firing ceases, with only a few spikes
occurring before spiking stops. With further current increases,
only an initial spike occurs, as the reset mechanism is unable
to sink enough current to initiate a full Vmem state transition.
After firing ceases, the final value of Vmem when the input
pulse is applied depends on Vτr; for smaller Vτr, Vmem

preferentially latches high during the pulse, and for larger Vτr,
Vmem returns near resting levels after the initial spike.

While Fig. 3 examines the transition from nonspiking states
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to spiking states, studying neuron response to static currents
better quantifies long-term behaviors after capture by a limit
cycle or an attractor. Analyses of responses to transient and
static inputs offer complementary insights into how Iin and
Vτr shape dynamics. To this end, Fig. 4(a) and Fig. 4(b),
depict how Iin impacts neuron spike amplitude and frequency,
respectively. The curve in Fig. 4(b), which is commonly
referred to as an IF curve, shows that the firing rate increases
superlinearly until Iin≈60 nA for all Vτr shown. This super-
linear increase is caused by a feedback effect – a higher Iin
increases the Vmem integration rate, decreasing the Schmitt
trigger hysteresis window, causing the mean spike rate to
increase more than proportionately to Iin. The firing rate peaks
at a point (dependent of Vτr) and drops considerably (initially
nearly linearly) before the neuron finally stops spiking. Vτr

shifts the point along the IF curve where the curling begins.
IF curves mostly overlap before curling begins. As the IF curve
curls, we observe several interesting attractors that further
corroborate our observation of chaos at high currents (Fig.
4(c)). Fig. 4(d) shows time-domain voltages on these attractors
and exemplary waveforms at other points along the IF curve.

Combining complementary insights from Fig. 3 and Fig.

4 provides a more comprehensive understanding of the im-
pact and utility of the degree-of-freedom introduced by Vτr.
Reducing Vτr decreases the Iin required to incite spiking
and narrows the operating Iin range while largely preserving
dynamics (except near the threshold currents for initiating and
stopping continuous firing). This ability to constrain the Iin
range, and thereby limit the range of output spike amplitudes
and frequencies, adds value during the design of networks of
hardware neurons, as it relaxes requirements for presynaptic
spike detectors and postsynaptic potential generators [39].

C. Comparison with Mead-Style Axon Hillock

To elucidate the root cause of chaos in our proposed neuron,
we bypass capacitor Cin, which is equivalent to replacing the
MITE with a pFET while retaining the feedback capacitor. The
neuron architecture, the CAB components used, and the bias-
ing conditions are otherwise unchanged, thereby transforming
our chaotic I&F neuron into a standard I&F neuron (albeit with
a common-source output stage instead of the more popular
push-pull configuration). We compare the IF curves of both
neurons in Fig. 5(a-b). Both curves show a superlinear initial
increase in firing rate just past the firing threshold, yet Fig.
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5(b) shows a linear or sublinear rise across a large range of
Iin before curling and ceasing to fire. Moreover, the Iin at
which both IF curves peak for a given Vτr value is consistent.
However, the traditional I&F neuron exhibits a higher firing
threshold and higher initial firing rate with a greater sensitivity
to Vτr; additionally, the decrease in firing rate prior to stoppage
is smoother and spans a broader current range.

We also compare the largest Lyapunov exponents, denoted
by λ, of both neurons (Fig. 5(c-d)). λ quantifies the di-
vergence rate of nearby trajectories, distinguishing between
chaotic and nonchaotic dynamics. Nonchaotic systems ex-
hibit λ ≤ 0, indicating convergence to limit cycles or
quasiperiodicity. In contrast, chaotic systems exhibit λ > 0
by definition, reflecting sensitivity to initial conditions and
unpredictable (yet deterministic) behavior. The deterministic
nature of chaos differentiates it from noise, which arises from
stochastic processes. Chaos is also unlike instability arising
from positive system eigenvalues in that chaotic trajectories
remain confined to an attractor. The top row of subplots in
Fig. 5(c-d) correspond to the maximal Lyapunov exponents
(λ) estimated from constant-current, time-series spiking data
using the MATLAB® ‘lyapunovExponent’ function. We use
an expansion range of Tspike/8 so the estimated λ reflects
the immediate trajectory divergence rate. Tspike denotes the
interspike period, which is the inverse of the mean firing rate.
The bottom row of subplots shows λ · Tspike, representing
a dimensionless Lyapunov exponent normalized by the firing
rate. We observe that the largest Lyapunov exponent of the
chaotic neuron transitions from negative to positive values as
Iin is increased, indicating a transition to chaos. In contrast,
the maximal Lyapunov exponent of the standard I&F neuron is
always negative. Both neurons exhibit a sizable region where
λTspike remains roughly constant despite varying Iin. In the
region with flat λTspike, λ > 0 for the chaotic neuron, and
λ < 0 for the traditional I&F neuron. Both neurons show
inflections in λ before spiking ceases. Our experiments impli-
cate the MITE (i.e., the coupling into M4) as the root cause of
chaotic dynamics. We now develop a mathematical model to
decisively show the observed behavior is neither an artifact of

the experimental procedure nor physical noise processes and
to investigate dependencies on MITE parameters.

IV. CIRCUIT MODELING

This section follows the process of [39], finding differential-
algebraic equations (DAEs) for our chaotic neuron by balanc-
ing currents on each circuit node: Vmem, Vinv , Vspike, Vr,
and Vfg , isolating time-dependencies, and discarding terms
that are insignificant near the middle of the spiking range. In
this way, our compact modeling approach provides valuable
insights into the root cause of chaotic behavior and the impact
of key parameters, enabling a clearer understanding of the core
dynamics while intentionally abstracting real-world complex-
ities, such as mismatch and higher-order nonlinearities.

A. Time-Dependencies

Current balance yields the following expressions:

V̇mem =
(
Iin 9 Im1 + CzV̇spike

)/
UT (Cmem + Cz), (1)

V̇inv = (Im4 9 Im3)
/
UTCv, (2)

V̇spike =
(
Im6 9 Im5 + CzV̇mem

)/
UT (Cspk + Cz) , (3)

V̇r = (Im2 9 Im1)
/
UTCr, (4)

where voltages are in thermal voltage (UT ) units, and Cz =
1/(C91

in +C91
fb). Defining: C2

α = (Cmem + Cz) (Cspk + Cz)−
C2

z , and backsubstituting Eq. 3 into Eq. 1, we find that:

UTC
2
αV̇mem= (Iin9Im1) (Cspk+Cz)+(Im69Im5)Cz, (5)

UTC
2
αV̇spike= (Im69Im5) (Cmem+Cz)+(Iin9Im1)Cz. (6)

We neglect the second term in Eq. 5-6 since Cz≪Cin, Cfb≪
Cspk, Cmem. The voltage on the MITE FG node is given by:

Vfg=VFG0+βmVmem+βsVspike; βm≈βs≪1 by design. (7)

In Eq. 7, VFG0, denoting the Vfg with both MITE control
gates grounded, is used to adjust the effective MITE threshold
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voltage; in addition, βm and βs denote the capacitive coupling
factors looking into Vfg from Vmem and Vspike, respectively:

βm :=Cin

/
(Cin+Cfb+Cg) , βs :=Cfb

/
(Cin+Cfb+Cg) . (8)

B. Approach for Deriving Transistor Current Expressions
We derive transistor drain currents using the EKV model

[13], assuming matched threshold voltage (Vt0), threshold cur-
rent (Ith), and gate-substrate coupling factor (κ) for all pFETs
and nFETs. Note that FETs in our FPAA CABs are designed
to approximately match. Our derivations, detailed in Appendix
A, leverage experimental insights into the operating regime of
each FET during spiking to make valid approximations.

In particular, we first observe that the neuron power draw
(Fig. 6(a)) as a function of Vτr shows a decrease in power
draw with increasing Iin despite increasing spike rate. This
decrease can be attributed to the lower static current through
M4 and M6, as the drain-source voltage of M4 and M6 decrease
as Iin increases. M4 and M6 drain-source voltages can be
estimated from the orbit diagrams for Vmem and Vspike,
respectively (Fig. 6(b)). In the orbit diagram, dashed lines
delineate minima and solid lines delineate maxima. Note that
the orbit diagrams appear somewhat fuzzy at high currents,
and may have ‘detached’ minima or maxima (denoted by lone
dots), indicating large cycle-to-cycle amplitude variations, in-
turn providing another indication of chaos.

C. Model Summary and IF Curve Fitting Methodology

Compiling findings from Section IV-A and Appendix A:

τmV̇mem=Iin
/
κIth9γ1(Vmem9Vr), (9)

τnV̇inv=
1 9 eVinv9vdd

eκ(βmVmem+βsVspike)
9
1 9 e9Vinv

γ2e9κVmem
, (10)

τsV̇spike=
IFGB

Ith
+log2

1 + E1e
κVinv/2

1+E1e(κVinv9Vspike)/2
, (11)

τrV̇r=
(
κγ1

/
E2

1

)
(Vmem9Vr)9

(
19e9Vr

)/
e9κVspike , (12)

where γ2= exp (κ (vdd9VFG0)), τm=UTC
2
α

/
κIth(Cspk+Cz),

τn=UTCv exp(κ (Vt0+VFG09vdd))/Ith,
τs=UTC

2
α

/
Ith(Cmem+Cz), and τr=UTCr exp(κVt0)/Ith.

Thus, dynamics are fully determined by a couple key time
constants and dimensionless factors, which form a minimal
system representation. Certain parameters have little impact
on overall behavior if bounded within some range (e.g.,
τr). In the inevitable presence of process variations, such
as changes in FET dimensions and nodal capacitances, the
degrees-of-freedom provided by the two FGs (VFG0 and
IFGB) as well as Iin and Vτr can be leveraged to make
compensatory adjustments to relevant time constants and
dimensionless factors to mitigate impact on dynamics.

To fit model parameters, we fix physical constants (vdd and
UT ) and insensitive parameters (Cr, Cin, and Cfb), employing
a surrogate optimization strategy for the remaining nine pa-
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TABLE I
FITTED NEURON PARAMETERS

Time Constants Dimensionless Factors Other Constants
τm 1.326 µs κ 0.679 Ith 1.657 µA
τn 0.153 µs Vt0 18.89 IFGB 90.82nA
τs 0.339 µs βm, βs 0.065 UT 26.00mV
τr 5.796 µs γ2 3.004×106 vdd 96.00

rameters (X). We seek to minimize the mean-squared logarith-
mic error (MSLE) between the experimental and theoretical IF
curves at n query points while maintaining relaxed constraints
on parametric range and Lyapunov exponent signage:

argmin
X

1

n

n∑
i=1

log2
(
(1 + Ft(X, Iin,i))

/
(1 + Fe(Iin,i))

)
s.t.

Xl≤X≤Xu, λi<0 (i≤iz,1) , λi>0 (iz,2<i<iz,3) , (13)

where Ft and Fe denote the theoretical and experimental IF
curve functions, respectively, and Xl and Xu are the parameter
bounds. Although its concavity can not be generalized, MSLE
is an effective symmetrized percent error-like metric here,
since either Ft,e=0 (e.g., below the spiking threshold), or
Ft,e ≫ 1 (in which case, the objective approximates the mean-
squared distance between these IF curves on a logarithmic
scale). The input current query vector (Iin), which spans the
spiking range, is a concatenation of two logarithmically spaced
halves such that λ=0 for some Iin ∈ [Iin,n/2, Iin,n/2+1)
according to the experimental observations. Therefore, the
relaxed Lyapunov exponent constraints must be set up such
that: iz,1 < in/2 < iz,2. The structuring of Iin and the use of
a percentage-like objective help balance the fit across both
the low-frequency, nonchaotic and high-frequency, chaotic
regimes. Optimized parameters are summarized in Table I.

D. Model Analysis and Comparison

We now simulate the IF curve of our chaotic neuron using
the optimized parameters over the range where our approx-
imations are valid (Fig. 7(a)). While the concavities of the
simulated and experimental IF curve are similar, discrepancies
in the firing rate are observed near the edges of the plots. This

discrepancy stems from a mismatch between the slopes of the
theoretical and experimental IF curves on a log-log scale; near
their center, this slope is 1.0 in our simulation, but 1.5 in
our experiments. Fig. 7(b) shows the simulated IF curve of a
traditional I&F neuron with the same parameters as the chaotic
I&F neuron; mathematically, the traditional I&F neuron only
differs from the chaotic I&F neuron in that Vfg=Vmem, and
that the full log-squared form of the EKV models are used
for both M3 and M4 as a consequence of larger Vmem swings.
As in experiment, the initial firing rate of the traditional I&F
neuron is higher, and the slope of its IF curve on a log-
log scale is roughly half that of the chaotic neuron between
its initial and peak rates. We attribute the discrepancy in
the IF curve slopes between the models and experimental
results to inadequate representation of the following hysteresis
effects: frequency-dependent window shrinkage in the chaotic
model and feedback capacitance omission in the mathematical
model of the traditional I&F neuron (to keep comparisons
to the chaotic neuron as close as possible). The hysteresis
mechanisms causing these discrepancies are separate from
the mechanism inducing chaos as evidenced by the matching
shapes and zero-crossings of the Lyapunov exponent curves
(Fig. 7(c-d)). Our simulations validate our observations that the
Lyapunov exponents of the traditional I&F neuron are always
negative, whereas the chaotic I&F neuron exhibits positive
Lyapunov exponents at a region of high Iin. Furthermore,
the simulated orbit diagram shapes for the main dynamical
variables (Fig. 7(e)) closely match the experimental data.

In our comparative analysis of chaotic and traditional I&F
neurons, both experimental and theoretical evaluations pin-
point MITE gate coupling as the cause of chaos. We now
investigate the specific nonlinearities responsible for chaos
and the optimal parameters to amplify this phenomenon. The
chaotic and traditional I&F neurons have distinct feedback
mechanisms. In the chaotic neuron, feedback from Vspike into
the gate of M4 constitutes a voltage-mode weighted sum with
Vmem. In a traditional I&F neuron, this feedback is either an
additive, predominantly current-mode feedback when imple-
mented in hardware (and is omitted in our theoretical model
without a major change in the dynamics). The expression
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for V̇inv in Eq. 10 is governed by the sum of two terms,
where we denote the first term as T1 and the second term as
T2. In the chaotic neuron, voltage-mode feedback facilitates
interaction between Vmem and Vspike via the nonlinearity in
the denominator of T1, which is a multiplication in small-
signal analysis. This nonlinearity is hypothesized as the key
to chaos, with expectations of lower Lyapunov exponents if
the interaction between Vmem and Vspike is weaker or if T1

is significantly lower than T2. Given the similar swings of
Vmem and Vspike near the minimum Iin needed for chaos,
we predict high Lyapunov exponents when βm ≈ βs and
no chaos when βm and βs are below some threshold. γ2,
a function of VFG0 that grows with increasing MITE bias
current, influences the equilibrium of Vinv , affecting T1 and
T2 magnitudes oppositely. Thus, we expect the Lyapunov
exponent to peak at some VFG0.

We conduct parametric sweeps to validate these hypotheses,
performing a sensitivity analysis by varying each of the three
MITE parameters: VFG0, βm, and βs while fixing the input
current Iin at 40 nA, which is within the chaotic regime and
well within the valid range of our model. Our sweeps (Fig.
8) show Lyapunov exponents alongside the distribution of the
extrema values of Vmem about its min/max levels; while the
latter metric can be ambiguous due to persistent integration
noise, it serves as a second independent indicator of chaotic
behavior. Our findings confirm that chaos is observed if the
MITE is programmed to a low current (high VFG0), and that
the Lyapunov exponent has a distinctive peak. Moreover, we
confirm that a minimum βm and βs are necessary to trigger
chaos, with the maximal Lyapunov exponents occurring when

βm ≈ βs. These numerical findings give strong support to our
hypothesis that the nonlinear denominator of T1 fosters chaos.

V. APPLICATION: SYNCHRONIZED CHAOTIC NEURONS

We now demonstrate our chaotic neuron in network appli-
cations through simulations, showing neural synchronization
and secure communication via the circuit-based, two-neuron
oscillator design in Fig. 9(a). We prune the framework outlined
in [39] to model a two-neuron system using solely exci-
tatory synaptic connections. Interconnection of the neurons
involves three steps: (1) detecting presynaptic spikes using a
thresholded comparator, (2) generating an asymmetric triangle
waveform upon spike detection, and (3) passing the triangle
waveform through the FG synapse to produce a biomimetic
excitatory postsynaptic current akin to the Rall Alpha function.

While [39] uses switching logic to emulate the functionality
of the comparator and triangle generator during derivative
computations, our modeling approach adopts a smooth thresh-
olding function using a ‘big-M ’ formulation. Our approach
enables more efficient simulation of our stiff chaotic systems
by addressing the numerical challenges posed by derivative
discontinuities. Reformulating Eq. 19 in [39] in terms of
the rise rate (τtr), fall rate (τtf), and a logistic function
(σ(x)=1

/
[1+exp(9Mx)]), triangle evolution is modeled by:

V̇tri=
σ(Vmem9Vthr)σ(vdd9Vtri)

τtr
9
σ(Vthr9Vmem)σ(Vtri)

τtf
, (14)

where M is a large number that abstracts amplifier gains, and
Vthr denotes the comparator threshold. In this work, M=1000,
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τtr=10 µs, and τtf=2 µs. From [39], the input currents to the
neurons given strictly excitatory connectivity are given by:[

Iin,1
Iin,2

]
=W

[
e9κfVtri,1

e9κfVtri,2

]
+

[
Iext
0

]
; Here, W =

[
0 IW
IW 0

]
. (15)

κf , represents the effective control gate-channel coupling of
the synapse FG (0.03 here), IW indicates synapse strength,
and Iext denotes an externally supplied perturbation current.

Fig. 9(b) shows the simulated response of the network
to a brief external stimulus under two synaptic weights. At
IW =40 nA, observe that the stimulus permanently perturbs
the relative phases of the neuron, whereas at IW =450 nA,
the neurons quickly resynchronize after the disturbance. In
the former scenario, the neurons do not truly phase lock,
whereas in the latter, they do; Fig. 9(c) shows that the
state variables of the two neurons synchronize at a critical
synaptic strength. Using such phase-locked chaotic oscillators,
one can encode a ‘secret’ input signal xin by adding the
product of the hidden state variables of the first neuron (e.g.,
Vmem,1 · Vinv,1 · Vspike,1). While it is trivial for the second
coupled chaotic neuron to unmask the secret message (since
its hidden states closely match those of the first neuron), an
outsider lacking knowledge of the neuron internal states (i.e.,
the ever-evolving ‘cipher’), can not unmask the message. This
spectral masking method, shown in Fig. 9(d), is a key approach
used in chaos-enabled hardware security. Two-neuron oscilla-
tors created with nonchaotic neurons, while capable of phase
locking [40], lack chaotic dynamics, making them unsuitable
for hardware security applications and for enabling simplified
analysis of synchronization phenomena in biological networks.

VI. DISCUSSION

Comparative investigations of our neuron model point to the
nonlinear interaction of Vmem and Vspike in the expression of
V̇inv , in turn facilitated by the MITE gate coupling, as the root
cause for chaotic behavior. This principle can be leveraged to
systematically design other chaotic neuron variants tailored
to specific application scenarios. Fig. 10(a) shows one such
variant, which substitutes the common-source output stage
with a current-starved inverter to mitigate static current draw
and substitutes the reset mechanism with a T-gate for stronger
reset while constraining the design to the components available
in a single FPAA CAB. Spike waveforms reveal that this mod-
ified circuit retains chaotic behavior and exhibits pronounced
bursting dynamics near the stopping current, with longer
intervals between spike bursts relative to the short interspike
intervals within the bursts. Furthermore, the oscillations and IF
curve of this alternative configuration closely resemble those
of our originally chaotic neuron, underscoring the robustness
and versatility of the FG Schmitt trigger-based design.

To recap, our original six-transistor neuron, which is exper-
imentally demonstrated on a 350 nm FPAA, draws 1.1 µW-
2.6 µW (depending on Iin), achieves spike rates between 2Hz-
20 kHz, and occupies 0.0025mm2 of the die area, which is
estimated by adding the footprints of utilized CAB elements
and adding a generous 25% to accommodate interconnect
overhead. Comparing our neuron with all previous nondriven

Ist

Vmem

Vout

Cin

Cfb

Vinv

Iin

Vin

10 s

100 ms 25 ms

10 ms

25 ms

1.5 ms

1.
75

1.
80

1.
85

1.
90

Vspike  (V)

540

545

550

555

V
in

v
 (

m
V

)

1 pA 10 pA 100 pA 1 nA 10 nA 100 nA 1 A
0.1

1

10

100

1000

M
ea

n
 S

p
ik

e 
R

at
e 

(H
z)

I in(a)
Vinj

Vmem

Iin

V r

Vspike

Vinv

Cfb

Cin

Vg,prog

run

run

Vd,prog

Vtun
Vg,sel

Vfg

Iinj

in
V

Iin

Cfb

Cin

Vg,prog

run

run

Vd,prog

VVg,sel

Iinj

MITE FG & 

Programming 

Interface

in
Vinj

V

Vtun

Vfg

in
V

V

(b)

Fig. 10. (a) Experimental characterization of an alternative chaotic I&F
neuron design using a T-gate reset mechanism and a current-starved inverter
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TABLE II
COMPARISON OF NONDRIVEN CHAOTIC SYSTEMS IN INTEGRATED CMOS

System Node (nm) Power (µW) Frequency FETs Area (mm2)
Proposed 350 1.1–2.6 2Hz–20 kHz 6* 0.0025
Chua [21] 2400 1600 5MHz 78 0.35
Lorenz [23] 500 2000 10 kHz ∼300 0.7
Aihara [29] 2000 – <1MHz (Est) 68 1.0 (Est)
Aihara [30] 500 – <200 kHz 240 0.06
TSN [31] 180 – 0.3-10 kHz (Est) ≥17 0.0075 (Est)
Ring Osc [34] 180** 29,600† <150 kHz ≥16† –

*Plus one synapse FET for voltage-mode inputs. **Simulation only with
external comparator and capacitors. †Including external comparator.

chaotic systems implemented on CMOS ICs that reported per-
formance (Table II), our proposed chaotic neuron demonstrates
the lowest power draw, number of FETs, and area overhead
of any such system thus far to the best of our knowledge.
The robustness of FGs and EKV models across process nodes
ensures consistent scaling of FG-enabled circuits [36]. The
reconfigurability, precision, and temperature compensation af-
forded by FGs are indispensable for modern chaotic neurons.
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Transitioning to an ASIC implementation offers significant
potential for improving performance metrics, particularly with
the development of precise FG programming infrastructure.
An ASIC design would reduce routing FETs, mitigating noise
effects and parasitics, which in turn decreases extraneous
coupling and energy-per-spike. The adoption of an island ar-
chitecture [41] enables efficient implementation of FG-enabled
circuits on ASICs by organizing FG primitives into an abutting
crossbar structure with switching and decoding elements at the
periphery. The island approach amortizes programming over-
head across rows and columns while retaining single-device
selectivity, thereby optimizing the density of FG-enabled cells
in a 2D grid, reducing place-and-route complexity, and en-
suring logical signal flow. Key considerations for FG design
include avoiding gate polysilicon contacts, using thick gate
oxides to prevent charge leakage and dielectric breakdown,
and minimizing tunneling capacitor size.

Fig. 10(b) shows a conceptual chaotic neuron for ASICs
using an island architecture. This design adds ten additional
FETs to switch the MITE control gates to Vg,prog during
program mode (when run=0) and to enable indirect hot-
electron injection through a program drain [42]. Within an
island, program drains (Vd,prog) are shared among neurons in
the same column, gate selection lines (Vg,sel) are shared across
rows, and the tunnel junction (Vtun) is shared across all neu-
rons. Programming involves switching the island to program
mode (run=0), tunneling all FGs in the island, and individually
injecting FGs to desired targets. An FG can be selected for
injection by asserting Vg,sel from a decoder tree and using
analog multiplexers to iteratively route the desired drain line to
either a pulse voltage source or a logarithmic current-to-digital
converter for verification. [16] gives a detailed overview of
voltage configurations and timing for tunneling, injection, and
intermediate steps, thereby showing the overall approach taken
to ensure precise, yet fast programming to a target current.

While our neurons are already resource-efficient, strategi-
cally integrating chaotic neurons within heterogeneous net-
works, where only a portion of neurons show chaotic behav-
ior, can significantly simplify hardware tuning and optimize
power and area usage in large-scale systems. Recent research
advocates for the use of such heterogeneous networks of
complex, nonlinear neurons to drastically reduce network size
while enhancing the solution of dynamic modeling problems
[7]. Heterogeneous networks require dedicated optimization
algorithms for effective weight selection across the network.
Our chaotic neuron contributes to a growing body of work
promoting the use of fewer, yet more functionally sophisticated
neurons with biorealistic dynamics to improve both network
accuracy and performance-per-Watt [6], [7].

VII. CONCLUSION

This work introduced chaotic dynamics into I&F neurons
by changing the coupling into one FET, thereby preserving the
core benefits of I&F designs, including ease of tuning and low
resource usage, while creating a novel six-FET configuration
with complex spiking behaviors, including chaotic chattering.
We first characterized and analyzed the behavior of our chaotic

neuron and its subcircuits experimentally on an FPAA. We
used experimental insights to derive a compact simulation
model. Through a comparative analysis of our chaotic neuron
with a nonchaotic counterpart through both experiment and
simulation, we crossvalidated dynamical observations and ana-
lyzed the nonidealities inciting chaotic behavior. Our resource-
efficient approach achieves the lowest area, power consump-
tion, and transistor count of any non-driven chaotic system
in CMOS, paving the way for scalable solutions in hardware
security, reservoir computing, and neuroscience exploration.

APPENDIX A
DERIVATION OF TRANSISTOR CURRENT EXPRESSIONS

Assuming matched pFETs and nFETs, the EKV equation
for current out of a pFET drain (well at vdd) is given by:

Ip=Ith
[
log2

(
1+Epe

(Vs9vdd)/2
)
9log2

(
1+Epe

(Vd9vdd)/2
)]

where

Ep=eκ(vdd9Vg9Vt0)/2≈I0,pe
9κVg

(
eVs9eVd

)
[subthreshold] (16)

and into an nFET drain (bulk tied to ground) is given by:

In=Ith
[
log2

(
1+Ene

9Vs/2
)
9log2

(
1+Ene

9Vd/2
)]

where

En=eκ(Vg9Vt0)/2≈I0,ne
κVg

(
e9Vs9e9Vd

)
[subthreshold]. (17)

In Eq. 16-17, Vs, Vg , and Vd, are UT -normalized source, gate,
and drain voltage, respectively. Furthermore:

I0,p=Ith exp (κ (vdd9Vt0)9vdd) , I0,n=Ith exp (9κVt0) . (18)

We assign currents using information from Fig. 6. To start, M6,
which is in subthreshold saturation, supplies its programmed
bias Im6=IFGB . M1, M3, and M4 are in subthreshold; thus:

Im1=I0,n exp(κVspike)(19exp(9Vr)), (19)
Im3=I0,n exp(κVmem)(19exp(9Vinv)), (20)
Im4=Im4,0 exp(9κV

′
fg)(19exp(Vinv 9vdd)), where (21)

Im4,0=Ithexp(κ(vdd9Vt09VFG0)) and V ′
fg=βmVmem+βsVspike.

M2 is typically operated above threshold; thus, defining E0 :
=eκ(Vτr9Vt0)/2 ≫ 1, and factoring the binomial:

Im2≈Ith

[
log2

(
E0e

9Vr/2
)
9log2

(
E0e

9Vmem/2
)]

=Ithe(Vmem9Vr)/2·

log
(
E2

0e
9(Vr+Vmem)/2

)
= (Ith/4)[2κ(Vτr9Vt0)9Vmem9Vr] ·

(Vmem9V1)≈κIthγ1(Vmem9Vr) ; γ1 : = (Vτr9Vt0) /2. (22)

Approximations used in Eq. 22 are valid in a subregion of
the Ohmic region for which Vτr9Vt0 ≫ (Vmem+Vr)/2κ, as
applicable for biases and frequencies of interest. M5 is also
above threshold, but we can not simplify its expression without
also affecting model dynamics significantly, thus:

Im5=Ith log2
1 + E1e

κVinv/2

1+E1e(κVinv9Vspike)/2
; E1=e9κVt0/2 (23)
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