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Abstract—Analog computational primitives, such as vector-
matrix multipliers (VMMs), are foreseen to play a pivotal role
in economizing computing; however, to improve the viability of
general-purpose accelerators, there is a need for efficient data
conversion and sorting during readout. This work introduces
“BuzzSort,” an event-driven framework that simultaneously
converts and sorts data from analog systems. BuzzSort ac-
quires analog data, retrieves sorting indices, and produces
a sorted output vector in linear time. We experimentally
demonstrate and characterize the efficacy of BuzzSort with a
field-programmable analog array (FPAA) in a 350 nm process
and a field-programmable gate array (FPGA).

1. Universal Readout in Analog Computing
Analog computing platforms hold a distinct advantage

for applications where low delay, power draw, and numerical
error are crucial [1]. This advantage is exemplified by the
pivotal role of analog vector-matrix multipliers (VMMs)
as building blocks in emerging computational applications
ranging from machine learning [2] to specialized tasks
like beamforming [3]. In VMM readout, there is often a
need to selectively prioritize or prune outputs to balance
the time or energy cost of the digitization with numerical
accuracy. VMM output priority is typically contingent on
the corresponding values, effectively reducing the task of
prioritization to that of sorting analog values.

VMM readout strategies are also application-specific;
certain tasks, such as deep neural networks, may require A-
D conversion of VMM outputs for subsequent computations
[4], while other tasks, such as single-layer classifiers might
only need the maximum output value from the VMM, of-
ten obtained through winner-take-all (WTA) circuits [5]. In
specialized applications like beamforming [3], both output
values and their sorted order are crucial. This diverse set
of sorting-based readout and processing requirements is not
unique to VMMs and extends to other analog cells, such as
image sensors used in computer vision or Hopfield networks
employed for energy surface optimization [6].

While catering to the differing demands poses consider-
able design challenge, an efficient readout mechanism that
meets these requirements would catalyze the commercial
adoption of various types of analog computational units,
including VMMs. Any proposed readout solution should
ideally be universally compatible (including on both mixed-
signal and digital domains). To prevent performance bottle-
necks, it is of utmost importance for the time complexity
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Figure 1. Human perception inherently sorts while observing physical phe-
nomena; for example, one can determine the relative lag of unsynchronized
alarm clocks with a preset alarm in linear time by observing the order in
which the clocks “buzz.” Such event-driven sorting approaches directly
map to hardware, of which, one implementation is shown. Building on the
event-driven paradigm in human perception, this work introduces a novel
framework named BuzzSort to facilitate analog data conversion and sorting.

of the proposed readout and sorting algorithms to scale
efficiently with the number of analog computational ele-
ments. Analog settling time often scales as O(M +N) (as
in the case of VMMs, where M and N are the number of
rows and columns, respectively), or faster in programmable
analog hardware, where the bias currents can be flexibly
scaled [1]. Although analog-digital converters (ADCs) can
operate in linear time or faster [7], sorting outputs from
VMMs or other analog cells in linear time or faster is
difficult – this would require the formulation of parallel,
comparison-free sorting algorithms adaptable to a diverse
array of approximate computing platforms [8].

To address these challenges, we introduce an event-
driven algorithm hereafter referred to as “BuzzSort.” In-
spired by human perception [Fig. 1], BuzzSort is an in-
tegrated data conversion and sorting algorithm optimized
for analog cells related to sleep sort, spaghetti sort, and
counting sort. Like sleep sort, spaghetti sort, and counting
sort [9], BuzzSort yields a final sorted output vector and the
sort indices in O(n) time. Our algorithm has been experi-
mentally verified using an in-house System on Chip (SoC)
field-programmable analog array (FPAA) implemented in
a 350 nm process and a field-programmable gate array
(FPGA), confirming its efficacy. To the best of our knowl-
edge, this work is the first demonstration of sorting on an
analog/mixed-signal platform and the first demonstration of
sorting on a physical-computing platform in linear time.
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Figure 2. BuzzSort hardware implementation details and subcircuit characterization. Signal flow diagram of the (a) complete testbench utilized for algorithm
verification and the (b) major subcircuits and their inter-connectivity. Pulse generator (c) schematic and (d) transient response as Vrmp crosses Vin,i. (e)
Ramp generator schematic and transient response. Both circuits in (c) and (e) can reside within a single CAB; CP,1 is a parasitic capacitance. In (e), the
ramp generator operates with a 0.1nA bias current, yielding a slightly non-linear, albeit monotonic ramp, which suffices in our application.

The rest of this work is organized as follows. Section
2 motivates BuzzSort. Section 3 elaborates on hardware-
level details and experimentally characterizes a mixed-signal
implementation of BuzzSort. Section 4 showcases the per-
formance of BuzzSort in a typical analog readout applica-
tion and section 5 discusses how BuzzSort compares with
contemporary approaches. Section 6 concludes the paper.

2. Foundations
BuzzSort uses strategies found in sleep, spaghetti and

counting sorts, such as time evolution, parallel comparison
and count-based storage. Consider the following gedanken-
experiments in the context of physical-computing platforms:

• Consider sorting n unsynchronized 24-hour clocks
(preset to buzz at midnight) based on their current time.
One could simply observe the sequence of buzzes.

• Imagine sorting n finite-length spaghetti sticks by
length. Standing the bundle on a table and obscuring
the top using one’s hand, one could slowly lower one’s
hand, observing the order in which the sticks appear.

The gedankenexperiments underscore that parallel dynam-
ical evolution and comparison yield effective sorting, pro-
vided that values are bounded. This event-driven approach
offers configurable trade-offs among sorting time, sorting
accuracy, resolution, item count (n), and power draw, en-

abling application-specific optimization. These trade-offs are
empirically examined in the following sections.

3. Circuit Architecture and Characterization
In our hardware testbench, shown in Fig. 2(a), analog

circuits on an FPAA handle item evolution and event gener-
ation, while address-event register (AER)-based digital logic
on an FPGA observes and records the event sequence [Fig.
2(b)]. In our demonstrations, we sort four voltages supplied
from an digital-analog converter (DAC). All runtime con-
trol/communication of/with the DAC, FPAA, or FPGA is
handled through a data-acquisition system (DAQ).

3.1. Analog-Domain Circuits
In the analog domain, our in-house FPAA, equipped with

98 programmable computational analog blocks (CABs) and
a nonvolatile floating-gate (FG) pFET routing fabric, houses
n=4 pulse generators and one ramp generator. Subcircuit
bias currents, also generated with FG pFETs, can be pro-
grammed to 13-bit precision using hot-electron injection.

For reasons that will be subsequently elucidated, the
AER dictates sorting performance in large-scale systems;
thus, the analog circuit architecture is intricately tied to the
application-specific design of the digital logic. Our event
detector in this work is a pulse generator, which grants
enhanced flexibility in configuring the AER subsystem. For
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Figure 3. (a) Temporal evolution of Vevt,: and resultant sorted outputs given a representative input array and control signals. BuzzSort accuracy over
N = 1000 trials versus (b) the voltage differential ∆ between input voltages Vin,i for several Vrmp periods T and (c) T for a fixed ∆ =4mV. In the
top row of subplots, n = 2, with Vin,2 − Vin,1 = ∆; in the bottom row, n = 4, with Vin,2 − Vin,1 = ∆ and Vin,1 − Vin,0 = Vin,3 − Vin,2 = ∆/2.
As elucidated in the body, these plots highlight the crucial influence of comparator offsets and timing jitter on BuzzSort performance.

example, in applications with low resolution or speed re-
quirements, the state machine in the AER may be bypassed
in favor of a simpler configuration comprising a multi-input
OR gate and a priority encoder; in systems subjected to
rigorous latency constraints, latency can be minimized by
bypassing the delay elements in the pulse generator.

The pulse generator, elucidated in Fig. 2(c), is a level-
crossing detector that compares the item value Vin,i against
a rising reference Vrmp, generating a brief active-low pulse
when the two values cross. This functionality is achieved
by feeding the comparator output Vcmp into a NOT gate
to generate a delayed and inverted copy Vd and by using
a NAND gate to compare Vd to Vcmp. The NOT gate is
current-starved so the high-low transition time is adjustable,
thereby allowing tunability of the NAND gate output pulse
width. As shown in Fig. 2(d), the biasing in this work leads
to a 120 µs delay between the beginning of a comparator
output transient and the output pulse generation (due to
comparator slew) and an output pulse width of 75 µs. Delays
do not affect performance as long as they are consistent (as
ensured through programmable biases) — a consistent delay
corresponds to a systematic shift in the values after A-D
conversion and does not change the sorted order.

The ramp generator [Fig. 2(e)] produces a rising out-
put Vrmp when its input Vrst is low, and resets to a
low state when Vrst is high. By utilizing an operational-
transconductance amplifier (OTA) integrator and a T-gate
reset, our design can fit within a single CAB alongside

a pulse generator. Although separate ramp generators for
each input item would mitigate bus delays in large systems,
a single ramp generator can be employed in this work
given the small problem size. Our energy-efficient design
integrates using bussline parasitics; for rise times of 100ms
on a VDD=2.5V process, the OTA can be biased with
roughly 0.1 nA. Note that Vrmp is externally supplied during
characterization of the integrated system [as in Fig. 3].

3.2. Digital-Domain Circuits
Our digital-domain components [Fig. 2(b)] are realized

on a Tang Nano 9K (Gowin GW1NR-9) FPGA. These cir-
cuits observe pulse events generated by the FPAA circuitry
and subsequently infer the order and voltages of the analog
inputs Vin,i. Incoming event pulses are first routed through
debouncing logic to ensure noise-free transitions. The de-
bounced inputs D[3 : 0] are then channeled into an AER-like
structure partially comprising four 2-state Mealy machines.
Given an event on its debounced bit, each Mealy machine
outputs a ‘1’ and undergoes a 1 −→ 0 state transition, latching
to the ‘0’ state until the reset signal Vrst is applied on the
onset of the next conversion Vrmp. Mealy machine outputs
are processed by a priority encoder to produce an “ID”
corresponding to the input event address. Concurrently, a
multi-input OR gate generates an “Event Flag.”

The “Event Flag” serves a dual purpose: clocking a
counter tallying the number of observed events, and trig-
gering write operations to two output data registers: the
sorting index register ‘idx’ and the sorted value register



‘val.’ The pre-update event count defines the current register
write addresses. Here, ‘idx’ stores the input event addresses
ascertained by the AER, and ‘val’ stores elapsed times from
Vrst to the respective event. From the perspective of ‘val,’
our architecture essentially functions like a comparator bank
cascaded with time-digital converters and resembles parallel
ramp ADCs, which are theoretically explored in [10]. Data
retrieval from the FPGA output data registers is facilitated
through a serial peripheral interface (SPI).

4. Results
During typical BuzzSort operation [Fig. 3(a)], FPAA

analog circuits and FPGA digital logic consume 0.26 µW
and 0.98mW, respectively. The maximum sorting speed is
constrained by the power budget; however, reducing power
is more complex than simply decreasing T , as the analog
power is predominated by the static draw of the nine-
transistor OTA used as the comparator, rather than switching
(dynamic) power. In a custom implementation, both analog
and digital power could be reduced by orders of magnitude.
Notably, given the infrequency of level crossings, alternate
comparator designs, like strong-arm latches (which draw
near-zero static power) could perform better.

As elucidated by Fig. 3(b-c), we now show that BuzzSort
scalability (given requirements on sorting accuracy, number
of items, resolution, and timing) is not bottlenecked by the
analog circuits in a reconfigurable, programmable platform.
While comparator offsets and timing jitter significantly im-
pact sorting performance, in programmable systems, offsets
can be largely mitigated (e.g., through use of FG differ-
ential pairs, such as in FGOTAs [11]). Fig. 3(b) shows that
when the difference among the input voltages ∆ sufficiently
exceeds comparator offsets, sorting accuracy is high and
insensitive to the Vrmp period T and the number of items n.
This makes BuzzSort a “plug-and-play” solution for sorting
tasks requiring below 12 effective-number-of-bits (ENOB)
of resolution, which is compliant with the specifications of
many approximate computing applications.

If ∆ approximates the inherent comparator offset, the
system tends enters a metastable regime, as evidenced
around ∆ = 4mV in Fig. 3(b) and further analyzed in
Fig. 3(c). In this regime, sorting accuracy has a pronounced
sensitivity to timing jitter and comparator slew mismatch.
The metastable regime also exhibits undesirable scaling
behavior; not only is the sorting accuracy a strong function
of T , but the minimum T required for accurate sorting also
increases strongly with n. To avoid operating in this regime,
the input resolution should be kept coarser than the largest
comparator offset, which in turn ensures that BuzzSort
scales favorably. Comparator offset is caused by differen-
tial pair mismatch, which can be improved by increasing
transistor sizes. Consequently, comparator mismatch bounds
the input resolution, considering the O (n) time and space
scaling required from BuzzSort.

Specifically, comparisons occur in O (1) time outside
the metastable regime, irrespective of the number of items
n and determined solely by T , which in-turn can be tuned
over a wide range (according to application requirements)

TABLE 1. COMPARISON OF BUZZSORT TIME AND SPACE COMPLEXITY
TO CONTEMPORARY SORTING ALGORITHMS

Algorithm Time Complexity Space Complexity
BuzzSort O(n) O(n)
Quicksort [12] Average: O(n logn) O(1)
Merge Sort [13] O(n logn) O(n)
Counting Sort [14] O(n+ k), k = range O(k)
Spaghetti Sort [9] Average: O(n) O(n)

without detriment to accuracy. Since the “analog NAND”
output stage within the pulse generator can be analyzed
similarly to a common-source amplifier, and since the FG
pFET in the “analog NAND” is biased in the subthreshold
regime, the output stage sustains a constant power-delay
product (PDP) [1]. Consequently, if n grows (proportionally
scaling the output bus capacitance), the output stage bias can
be power-scaled proportionally to hold bus communication
delays constant. These features allow our analog circuits to
scale with O (1) time complexity for design sizes feasible
within chip die dimensions.

Hence, BuzzSort scalability is not bottlenecked by the
analog circuitry, but rather by the AER paradigm. The AER
is responsible for resolving and recording a sequence of
events, thereby introducing a trade-off between time and
voltage resolution. Thus, analog dynamics may need to be
slowed to achieve high sorting accuracy while sorting a large
number of items or targeting finer voltage resolution. The
distributed Mealy machines within the AER operate locally
(and hence with constant time complexity).

The AER also includes a priority encoder and a multi-
input OR gate which are implemented as trees of logic gates,
resulting in routing-constrained time and space complexities
of O(n) [1]. Additionally, assuming each output data reg-
ister write operation by the AER completes within a fixed
window and occurs at most n times during a full conversion
cycle (filling the n ‘idx’ and ‘val’ registers), the worst-case
time and space complexities of BuzzSort are both O(n).

5. Discussion
Though it is easiest to prove the impact of a work by com-
paring it to existing approaches, due to the severe scarcity of
literature on analog sorting, with the only known exception
of spaghetti sort [1, 9], we separately benchmark our algo-
rithms and analog design against classical sorting methods
and other analog event detection applications, respectively.

5.1. BuzzSort vs Contemporary Sorting Algorithms
While optimizing analog readout performance, it is es-

sential to employ algorithms with a time complexity of O(n)
or better. This rules out all sequential, comparison-based
sorting algorithms, such as merge sort and quicksort [15],
which have a worst-case time complexity of O(n log n).

An alternative lies with comparison-free sorting algo-
rithms like counting sort [14] or sleep sort. Counting sort
leverages bounded integer keys, counting occurrences to
produce a sorted output array. The worst-case time and
space complexities of counting sort are O(n+k) and O(k),
respectively, with k denoting the input value/key range [16].



TABLE 2. COMPARISON OF BUZZSORT HARDWARE METRICS TO
CONTEMPORARY EVENT DETECTOR IMPLEMENTATIONS

Application Power (µW) Area (mm2) Bandwidth (kHz)
BuzzSort (FPAA Only) 0.26/Ch 0.10 [19] 0-0.1
Vehicle Classification [20] 46.7 2.25 0.02-100
Level Crossing ADC [21] 3.9 2.00 0.02-20
Voice Detection [18] 3.49 0.25 0-16
Wireless Sensor Node [22] 214 2.25 0.5-1.4

Sorting algorithms that parallelize comparisons, such
as spaghetti sort [9], can also achieve a worst-case time
complexity of O(n). Although historically considered im-
practical, recent developments suggest spaghetti sort can be
implemented on analog platforms using WTA circuits [17].
Table 1 presents a detailed time and space complexity com-
parison of contemporary sorting algorithms to BuzzSort; the
worst-case time and space complexity of BuzzSort mirrors
the average case of spaghetti sort.

5.2. BuzzSort Circuit vs Other Event Detectors
Table 2 compares the performance of BuzzSort’s analog

event detector with other event detectors operating near the
audio frequency range. The analog circuits used in BuzzSort
exhibit several-fold lower runtime power draw than the other
circuits in Table 2. Moreover, the estimated die area required
for implementing the analog-domain BuzzSort circuits is
lower than that of the other approaches. This superior level
of performance is facilitated by the FPAA, which permits
selective utilization of only the essential analog blocks. Note
that each pulse generator used in BuzzSort occupies only a
miniscule fraction of an FPAA CAB.

However, the low power draw of BuzzSort comes with
an operating frequency penalty; to increase operating fre-
quency, FG pFETs must be biased for higher drain currents,
consequently elevating power draw. Nevertheless, unlike
other event detector applications, achieving a high operating
frequency is not as critical for most sorting algorithm ap-
plications. For instance, a voice detection circuit [18] must
have an input bandwidth that at least encompasses the fre-
quency range of human speech. BuzzSort is instead designed
primarily for high spatial bandwidth, that is, sorting a large
input item volume, rather than high time-domain bandwidth.

6. Conclusion
BuzzSort is a facilitating advancement in the readout

of analog cells; by uniquely integrating data conversion
and sorting, BuzzSort fulfills diverse requirements across
different application scopes and various computing plat-
forms. We conduct hardware-level experiments exploring the
efficacy of BuzzSort using an FPAA in a 350 nm process
and a commercially available FPGA. Our results provide
strong empirical validation for the unparalleled performance
scaling of BuzzSort in approximate computing platforms.
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